Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T09:26:24.608Z Has data issue: false hasContentIssue false

The solar proxy κ1 Cet and the planetary habitability around the young Sun

Published online by Cambridge University Press:  12 September 2017

J.-D. do Nascimento Jr.
Affiliation:
Univ. Federal do Rio G. do Norte, UFRN, Dep. de Fisica, CP 1641, 59072-970, Natal, RN, Brazil: [email protected] Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, US
A. A. Vidotto
Affiliation:
Observatoire de Genève, 51 ch. des Maillettes, CH-1290, Switzerland School of Physics, Trinity College Dublin, Dublin 2, Ireland
P. Petit
Affiliation:
Univ. de Toulouse, UPS-OMP, IRAP, CNRS, 14 Av. E. Belin, F-31400 Toulouse, France
C. Folsom
Affiliation:
Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France
G. F. Porto de Mello
Affiliation:
Observ. do Valongo, UFRJ, L do Pedro Antoio, 43 20080-090, RJ, Brazil
S. Meibom
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, US
X. C. Abrevaya
Affiliation:
Inst. de Astronom y Fica del Espacio (IAFE), UBA CONICET, Buenos Aires, Argentina
I. Ribas
Affiliation:
Inst. de Ciències de l’Espai, C. de Can Magrans, s/n, Campus UAB, 08193 Bellaterra, Spain
M. Castro
Affiliation:
Univ. Federal do Rio G. do Norte, UFRN, Dep. de Fisica, CP 1641, 59072-970, Natal, RN, Brazil: [email protected]
S. C. Marsden
Affiliation:
CESCR, Univ. of Southern Queensland, Toowoomba, 4350, Australia
J. Morin
Affiliation:
LUPM-UMR5299, U. Montpellier, Montpellier, F-34095, France
S. V. Jeffers
Affiliation:
I. für Astrophysik, G.-August-Univ., D-37077, Goettingen, Germany
E. Guinan
Affiliation:
Univ. of Villanova, Astron. Department, PA 19085 Pennsylvania, US
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the solar proxies, κ1 Cet, stands out as potentially having a mass very close to solar and a young age. We report magnetic field measurements and planetary habitability consequences around this star, a proxy of the young Sun when life arose on Earth. Magnetic strength was determined from spectropolarimetric observations and we reconstruct the large-scale surface magnetic field to derive the magnetic environment, stellar winds, and particle flux permeating the interplanetary medium around κ1 Cet. Our results show a closer magnetosphere and mass-loss rate 50 times larger than the current solar wind mass-loss rate when Life arose on Earth, resulting in a larger interaction via space weather disturbances between the stellar wind and a hypothetical young-Earth analogue, potentially affecting the habitability. Interaction of the wind from the young Sun with the planetary ancient magnetic field may have affected the young Earth and its life conditions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abrevaya, X. C. 2017, Living around active stars. Proceedings of IAU Symposium 328. Google Scholar
Airapetian, V. S. & Usmanov A. V., 2016, ApJL, 817, 24 Google Scholar
Aurière, M., 2003, in Arnaud, J., Meunier, N. eds., Magnetism and Activity of the Sun and Stars, EAS Pub. Ser., 9, 105 Google Scholar
Bagenal, F., 1992, Annual Review of Earth and Planetary Sciences, 20, 289 Google Scholar
Barnes, S. A., 2007, ApJ, 669, 1167 Google Scholar
Cravens, T. E. 2004, Physics of Solar System Plasmas Google Scholar
Cnossen, I., Sanz-Forcada, J., Favata, F., Witasse, O., Zegers, T., & Arnold, N. F., 2007, J. Geophys. Res. (Planets), 112, 2008 CrossRefGoogle Scholar
Dorren, J. D. & Guinan, E. F. 1994, IAU 143, The Sun as a Variable Star, ed. Pap, J. M., Frölich, C., Hudson, H. S., & Solanki, S., Cambridge U. Press, 206 Google Scholar
do Nascimento, J. D., Petit, P., Castro, M. et al., 2014, Magnetic Fields throughout Stellar Evolution. Proceedings of the IAU Symposium, 302, 142 Google Scholar
do Nascimento, J.-D., Takeda, Y. Jr, et al., 2013, ApJL, 771, 31 Google Scholar
do Nascimento, J.-D., García, R. A. Jr, et al., 2014, ApJL, 790, 23 Google Scholar
do Nascimento, J.-D., Vidotto, A. A. Jr, et al., 2016, ApJL, 820, 15 Google Scholar
Donati, J.-F., Howarth, I. D., Jardine, M. M. et al., 2006, MNRAS, 370, 629 Google Scholar
Donati, J.-F., Semel, M., Carter, B. D., et al., 1997, MNRAS, 291, 658 Google Scholar
Folsom, C. P., Petit, P., Bouvier, J., et al., 2016, MNRAS, 457, 580 Google Scholar
Grevesse, N. & Noels, A. 1993, Origin and Evolution of the Elements, eds. Prantzos, N., Vangioni–Flam, E., and Cassé, M., Cambridge U. Press, 15 Google Scholar
Güdel, M., Guinan, E. F., & Skinner, S. L., 1997, ApJ, 483, 947 Google Scholar
Huang, S.-S., 1960, Am. Sci., 202, 55 Google Scholar
Jakosky, B. M. & Phillips, R. J., 2001, Nature, 412, 237 Google Scholar
Kawaler, S. D., 1988, ApJ, 333, 236 CrossRefGoogle Scholar
Kawaler, S. D., 1989, ApJ, 343, L65 Google Scholar
Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al., 2013, ApJ, 765, 131 Google Scholar
Kochukhov, O., Makaganiuk, V., & Piskunov, N., 2010, A&A, 524, A5 Google Scholar
Kulikov, Y. N., Lammer, H., et al., 2007, Space Sci. Rev., 207, 129 Google Scholar
Kupka, F. G., Ryabchikova, T. A., Piskunov, N. E., Stempels, H. C., & Weiss, W. W., 2000, Baltic Astronomy, 9, 590 Google Scholar
Lammer, H. et al., 2007, Astrobiology, 7, 185 Google Scholar
Marsden, S. C., Petit, P., et al., 2014, MNRAS, 4444, 3517 Google Scholar
Meibom, S., Barnes, S. A., et al., 2015, Nature, 517, 589 Google Scholar
Mojzsis, S. J., Arrhenius, G., McKeegan, K. D., et al., 1996, Nature, 384, 55 CrossRefGoogle Scholar
Morgenthaler, A., Petit, P., Saar, S., Solanki, S. K. et al., 2012, ApJ, 540, 138 Google Scholar
Newkirk, G., 1980, Geochimica Cosmochimica Acta Suppl., 13, 293 Google Scholar
Paletou, F., Böhm, T., Watson, V., & Trouilhet, J.-F., 2015, A&A, 573, A67 Google Scholar
Petit, P., Donati, J.-F., & Collier Cameron, A., 2002, ApJL, 771, 31 Google Scholar
Petit, P., Dintrans, B., et al., 2008, MNRAS, 388, 80 Google Scholar
Powell, K. G., Roe, P. L., et al., 1999, J. Chem. Phys., 154, 284 Google Scholar
Ribas, I., Porto de Mello, G. F., Ferreira, L. D., Hebrard, E. et al., 2010, ApJ, 714, 384 Google Scholar
Ribas, I., Guinan, E. F., Güdel, M., & Audard, M., 2005, ApJ, 622, 680 Google Scholar
Ribas, I., Guinan, E., & Güdel Audard, M., 2005, ApJ, 622, 680 Google Scholar
Richard, O., Vauclair, S., et al., 1996, A&A, 312, 1000 Google Scholar
Scargle, J. D., 1982, ApJ, 263, 835 CrossRefGoogle Scholar
Semel, M., 1989, A&A, 255, 456 Google Scholar
Skumanich, A., 1972, ApJ, 171, 565 Google Scholar
Sneden, C., 1973, ApJ, 184, 839 Google Scholar
Sterenborg, M. G., Cohen, O., Drake, J. J., & Gombosi, T. I., 2011, Journal of Geophysical Research (Space Physics), 116, 1217 Google Scholar
Tarduno, J. A., Cottrell, R. D., et al., 2010, Science, 327, 1238 Google Scholar
Tarduno, J. A., Cottrell, R. D., et al., 2015, Science, 349, 521 Google Scholar
Tóth, G., van der Holst, B., et al. 2012, Journal of Computational Physics, 231, 870 Google Scholar
Vauclair, S. & Théado, S., 2003, A&A, 587, 777 Google Scholar
Valenti, F. A. & Fischer, D., 2005, ApJS, 587, 777 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., et al., 2012, MNRAS, 423, 3285 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., et al., 2015, MNRAS, 449, 4117 Google Scholar
Vidotto, A. A., Jardine, M., Morin, J., et al., 2013, A&A, 557, A67 Google Scholar
Walker, G. A. H., et al., 2003, PASP, 115, 1023 Google Scholar
Wood, B. E., Laming, J. M., & Karovska, M., 2012, ApJ, 753, 76 Google Scholar
Wright, J. T., Marcy, G. W., Butler, R. P., Vogt, S. S. et al., 2004, ApJS, 152, 261 Google Scholar
Wood, B. E., Müller, H.-R., Redfield, S., & Edelman, E., 2014, ApJL, 781, L33 Google Scholar