Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:35:30.364Z Has data issue: false hasContentIssue false

Solar flare-CME association

Published online by Cambridge University Press:  28 September 2023

Ting Li*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China; mailto:[email protected]@nao.cas.cn School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We carry out the first statistical study that investigates the flare-coronal mass ejections (CMEs) association rate as function of the flare intensity and the total unsigned magnetic flux (ΦAR) of ARs that produces the flare. Our results show that flares of the same GOES class but originating from an AR of larger ΦAR, are much more likely confined. This implies that ΦAR is a decisive quantity describing the eruptive character of a flare, as it provides a global parameter relating to the strength of the background field confinement. We also calculated the mean twist values α in regions close to the polarity inversion line and proposed a new parameter α / ΦAR to measure the probability for a large flare to be associated with a CME. We find that the new parameter α/ ΦAR is well able to distinguish eruptive flares from confined flares.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Amari, T., Canou, A., Aly, J.-J., et al. 2018, Nature, 554, 211 CrossRefGoogle Scholar
Avallone, E. A. & Sun, X. 2020, ApJ, 893, 123 CrossRefGoogle Scholar
Baumgartner, C., Thalmann, J. K., & Veronig, A. M. 2018, ApJ, 853, 105 10.3847/1538-4357/aaa243CrossRefGoogle Scholar
Benson, B., Pan, W. D., Prasad, A., et al. 2021, SoPh, 296, 163 10.1007/s11207-021-01912-3CrossRefGoogle Scholar
Bobra, M. G. & Ilonidis, S. 2016, ApJ, 821, 127 CrossRefGoogle Scholar
Bobra, M. G., Sun, X., Hoeksema, J. T., et al. 2014, SoPh, 289, 3549 CrossRefGoogle Scholar
Duan, A., Jiang, C., He, W., et al. 2019, ApJ, 884, 73 CrossRefGoogle Scholar
Fletcher, L., Dennis, B. R., Hudson, H. S., et al. 2011, Space Science Reviews, 159, 19 CrossRefGoogle Scholar
Gupta, M., Thalmann, J. K., & Veronig, A. M. 2021, A&A, 653, A69 CrossRefGoogle Scholar
Harra, L. K., Schrijver, C. J., Janvier, M., et al. 2016, SoPh, 291, 1761 CrossRefGoogle Scholar
Hood, A. W. & Priest, E. R. 1979, SoPh, 64, 303 CrossRefGoogle Scholar
Kazachenko, M. D., Lynch, B. J., Welsch, B. T., et al. 2017, ApJ, 845, 49 CrossRefGoogle Scholar
Kazachenko, M. D., Lynch, B. J., Savcheva, A., et al. 2022, ApJ, 926, 56 10.3847/1538-4357/ac3af3CrossRefGoogle Scholar
Kushwaha, U., Joshi, B., Cho, K.-S., et al. 2014, ApJ, 791, 23 CrossRefGoogle Scholar
Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., et al. 2007, Astrobiology, 7, 185 CrossRefGoogle Scholar
Leitzinger, M., Odert, P., Greimel, R., et al. 2014, MNRAS, 443, 898 CrossRefGoogle Scholar
Leka, K. D. & Skumanich, A. 1999, SoPh, 188, 3 CrossRefGoogle Scholar
Li, T., Hou, Y., Yang, S., et al. 2020, ApJ, 900, 128 10.3847/1538-4357/aba6efCrossRefGoogle Scholar
Li, T., Chen, A., Hou, Y., et al. 2021, ApJ Letters, 917, L29 CrossRefGoogle Scholar
Li, T., Sun, X., Hou, Y., et al. 2022, ApJ Letters, 926, L14 10.3847/2041-8213/ac5251CrossRefGoogle Scholar
Liu, L., Wang, Y., Wang, J., et al. 2016, ApJ, 826, 119 10.3847/0004-637X/826/2/119CrossRefGoogle Scholar
Lu, H.-. peng., Tian, H., Zhang, L.-. yun., et al. 2022, A&A, 663, A140Google Scholar
Maehara, H., Shibayama, T., Notsu, S., et al. 2012, Nature, 485, 478 10.1038/nature11063CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3 CrossRefGoogle Scholar
Reep, J. W. & Knizhnik, K. J. 2019, ApJ, 874, 157 CrossRefGoogle Scholar
Sahu, S., Joshi, B., Sterling, A. C., et al. 2022, ApJ, 930, 41 10.3847/1538-4357/ac5cc1CrossRefGoogle Scholar
Shibata, K., Isobe, H., Hillier, A., et al. 2013, PASJ, 65, 49 CrossRefGoogle Scholar
Song, Y. & Tian, H. 2018, ApJ, 867, 159 10.3847/1538-4357/aae5d1CrossRefGoogle Scholar
Sun, X., Bobra, M. G., Hoeksema, J. T., et al. 2015, ApJ Letters, 804, L28 10.1088/2041-8205/804/2/L28CrossRefGoogle Scholar
Sun, X., Török, T., & DeRosa, M. L. 2022, MNRAS, 509, 5075 CrossRefGoogle Scholar
Toriumi, S., Schrijver, C. J., Harra, L. K., et al. 2017, ApJ, 834, 56 CrossRefGoogle Scholar
Török, T. & Kliem, B. 2005, ApJ Letters, 630, L97 CrossRefGoogle Scholar
Vasantharaju, N., Vemareddy, P., Ravindra, B., et al. 2018, ApJ, 860, 58 10.3847/1538-4357/aac272CrossRefGoogle Scholar
Veronig, A. M., Odert, P., Leitzinger, M., et al. 2021, Nature AstronomyGoogle Scholar
Wang, D., Liu, R., Wang, Y., et al. 2017, ApJ Letters, 843, L9 10.3847/2041-8213/aa79f0CrossRefGoogle Scholar
Wang, Y., & Zhang, J. 2007, ApJ, 665, 1428 CrossRefGoogle Scholar
Wu, Y., Chen, H., Tian, H., et al. 2022, ApJ, 928, 180 CrossRefGoogle Scholar
Yashiro, S., Akiyama, S., Gopalswamy, N., et al. 2006, ApJ Letters, 650, L143 CrossRefGoogle Scholar