Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-16T07:27:02.358Z Has data issue: false hasContentIssue false

Solar Flare Prediction Using Machine Learning with Multiwavelength Observations

Published online by Cambridge University Press:  24 July 2018

Naoto Nishizuka
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Komei Sugiura
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Yuki Kubo
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Mitsue Den
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Shin-ichi Watari
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Mamoru Ishii
Affiliation:
National Institute of Information and Communications Technology, 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, Japan184-8795 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We developed a flare prediction model based on the supervised machine learning of solar observation data for 2010-2015. We used vector magnetograms, lower chromospheric brightening, and soft-X-ray data taken by Solar Dynamics Observatory and Geostationary Operational Environmental Satellite. We detected active regions and extracted 60 solar features such as magnetic neutral lines, current helicity, chromospheric brightening, and flare history. We fully shuffled the database and randomly divided it into two for training and testing. To predict the maximum size of flares occurring in the following 24 hours, we used three machine-learning algorithms independently: the support vector machine, the k nearest neighbors (kNN), and the extremely randomized trees. We achieved a skill score (TSS) of greater than 0.9 for kNN. Furthermore, we compared the prediction results in a more operational setting by shuffling and dividing the database with a week unit. It was found that the prediction score depends on the way the database is prepared.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Ahmed, O. W., Qahwaji, R., Colak, T., et al. 2013, Sol. Phys., 283, 157Google Scholar
Barnes, G., Leka, K. D., Schrijver, C. J., et al. 2016, Astrophys. J., 829, 89Google Scholar
Bloomfield, D. S., Higgins, P. A., McAteer, R. T. J. & Gallagher, P. 2012, ApJ(Letters), 747, L41CrossRefGoogle Scholar
Bobra, M. G. & Couvidat, S. 2015, Astrophys. J., 798, 135Google Scholar
Cortes, C. & Vapnik, V. 1995, Mach. Learn., 20, 273Google Scholar
Crown, M. D. 2012, Space Weather, 10, S06006Google Scholar
Dasarathy, B. V. 1991, Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques (Los Alamitos, CA: IEEE Computer Society Press), 447Google Scholar
Devos, A., Verbeeck, C. & Robbrecht, E. 2014, J. Space Weather Space Clim., 4, A29Google Scholar
Guerts, P., Ernst, D. & Wehenkel, L. 2006, Mach. Learn., 63, 3Google Scholar
Hanssen, A. J. & Kuipers, W. J. 1965, Meded Verhand, 81, 2Google Scholar
Kubo, Y., Den, M. & Ishii, M. 2017, J. Space Weather Space Clim., 7, A20CrossRefGoogle Scholar
Leka, K. D. & Barnes, G. 2003, Astrophys. J., 595, 1296CrossRefGoogle Scholar
Lemen, J., Title, A. M., Akin, D. J., et al. 2012, Sol. Phys., 275, 17Google Scholar
Liu, C., Deng, N., Wang, J. T. L. & Wang, H. 2017, Astrophys. J., 843, 104Google Scholar
McCloskey, A. E., Gallagher, P. T. & Bloomfield, D. S. 2016, Sol. Phys., 291, 1711Google Scholar
Murray, S. A., Bingham, S., Sharpe, M. & Jackson, D. R. 2017, Space Weather, 15, 577Google Scholar
Nishizuka, N., Sugiura, K., Kubo, Y., et al. 2017, Astrophys. J., 835, 156Google Scholar
Pesnell, W., Thompson, B. J., Chamberlin, P. C., et al. 2012, Sol. Phys., 275, 3Google Scholar
Raboonik, A., Safari, H., Alipour, N. & Wheatland, M. S. 2017, Astrophys. J., 834, 11Google Scholar
Scherrer, P. H., Schou, J., Bush, R. I., et al. 2012, Sol. Phys., 275, 207CrossRefGoogle Scholar