Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T14:54:21.559Z Has data issue: false hasContentIssue false

Solar extreme ultraviolet (EUV) flare observations and findings from the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE)

Published online by Cambridge University Press:  09 September 2016

Thomas N. Woods
Affiliation:
Laboratory for Atmospheric and Space Physics, University of Colorado, 3665 Discovery Drive, Boulder, CO 80303, USA email: [email protected], [email protected], [email protected]
Francis G. Eparvier
Affiliation:
Laboratory for Atmospheric and Space Physics, University of Colorado, 3665 Discovery Drive, Boulder, CO 80303, USA email: [email protected], [email protected], [email protected]
James P. Mason
Affiliation:
Laboratory for Atmospheric and Space Physics, University of Colorado, 3665 Discovery Drive, Boulder, CO 80303, USA email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

New solar soft X-ray (SXR) and extreme ultraviolet (EUV) irradiance observations from NASA Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) provide full coverage from 0.1 to 106 nm and continuously at a cadence of 10 seconds for spectra at 0.1 nm resolution. These observations during flares can usually be decomposed into four distinct characteristics: impulsive phase, gradual phase, coronal dimming, and EUV late phase. Over 6000 flares have been observed during the SDO mission; some flares show all four phases, and some only show the gradual phase. The focus is on the newer results about the EUV late phase and coronal dimming and its relationship to coronal mass ejections (CMEs). These EVE flare measurements are based on observing the sun-as-a-star, so these results could exemplify stellar flares. Of particular interest is that new coronal dimming measurements of stars could be used to estimate mass and velocity of stellar CMEs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aschwanden, M. J., Nitta, N. V., Wuelser, J.-P., Lemen, J. R., Sandman, A., Vourlidas, A., & Colaninno, R. C. 2009a, First Measurements of the Mass of Coronal Mass Ejections from the EUV Dimming Observed with STEREO EUVI A+B Spacecraft, ApJ, 706, 376 CrossRefGoogle Scholar
Aschwanden, M. J., Wuelser, J.-P., Nitta, N. V., & Lemen, J. R. 2009b, Solar Flare and CME Observations with STEREO/EUVI, Solar Phys., 256, 3 CrossRefGoogle Scholar
Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. 2008, Flare Irradiance Spectral MoDel (FISM): Flare component algorithms and results, Space Weather J., 6, S05001 Google Scholar
Delaboudiniere, J.-P., Artzner, G. E., Brunaud, J., Gabriel, A. H., Hochedez, J. F., Millier, F., Song, X. Y., Au, B., et al. 1995, EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission, Solar Phys., 162, 291 CrossRefGoogle Scholar
Dellinger, J. H. 1937, Sudden Disturbances of the Ionosphere, J. Appl. Phys., 8, 732 CrossRefGoogle Scholar
Didkovsky, L., Judge, D., Wieman, S., & Woods, T. 2012, EUV SpectroPhotometer (ESP) in Extreme Ultraviolet Variability Experiment (EVE): Algorithms and Calibrations, Solar Phys., 275, doi 10.1007/s11207-009-9485-8 CrossRefGoogle Scholar
Donnelly, R. F. 1976, Empirical models of solar flare X ray and EUV emission for use in studying their E and F region effects, J. Geophys. Res., 81, 4745 CrossRefGoogle Scholar
Doschek, G. A. & Feldman, U. 2010, Topical Review: The solar UV-x-ray spectrum from 1.5 to 2000Å, J. Phys. B: At. Mol. Opt. Phys., 43, 232001 CrossRefGoogle Scholar
Ellison, M. A. 1946, Visual and spectrographic observations of a great solar flare, 1946 July 25, Mon. Not. Roy. Astron. Soc., 106, 500 CrossRefGoogle Scholar
Friedman, H. 1963, Ultraviolet and X Rays from the Sun, Ann. Rev. A&A, 1, 59 CrossRefGoogle Scholar
Fröhlich, C. 2011, A four-component proxy moDel for total solar irradiance calibrated during solar cycles 21-23, Contrib. Astron. Obs. Skalnaté Pleso, 35, 1 Google Scholar
Harra, L. K. & Sterling, A. C. 2001, Material Outflows from Coronal Intensity “Dimming Regions” during Coronal Mass Ejection Onset, ApJ. Lett., 561, 215, doi: 10.1086/324767 CrossRefGoogle Scholar
Harrison, R. A. & Lyons, M. 2000, A spectroscopic study of coronal dimming associated with a coronal mass ejection, A&A, 358, 1097 Google Scholar
Harrison, R. A., Bryans, P., Simnett, G. M., & Lyons, M. 2003, Coronal dimming and the coronal mass ejection onset, A&A, 400, 1071 Google Scholar
Hock, R. A., Chamberlin, P. C., Woods, T. N., Crotser, D., Eparvier, F. G., Furst, M., Woodraska, D. L., & Woods, E. C. 2012, Extreme Ultraviolet Variability Experiment (EVE) Multiple EUV Grating Spectrographs (MEGS): Radiometric Calibrations and Result, Solar Phys., 275, doi 10.1007/s11207-010-9520-9 CrossRefGoogle Scholar
Hudson, H. 2010, Observations of solar and stellar eruptions, flares, and jets, in Heliophysics Space Storms and Radiation: Causes and Effects, ed. Schrijver, C. J. & Siscoe, G. L., Cambridge University Press, Cambridge, pp. 123158 CrossRefGoogle Scholar
Hudson, H. 2011, Global Properties of Solar Flares, Sp. Sci. Rev., 158, 5 CrossRefGoogle Scholar
Hudson, H. S., Lemen, J. R., St.Cyr, O. C., Sterling, A. C., & Webb, D. F. 1998, X-ray coronal changes during Halo CMEs, Geophys. Res. Lett., 25, 2481, doi: 10.1029/98GL01303 CrossRefGoogle Scholar
Kopp, R. A. & Pneuman, G. W. 1976, Magnetic reconnection in the corona and the loop prominence phenomenon, Solar Phys., 50, 85 CrossRefGoogle Scholar
Krista, L. D. & Reinard, A. 2013, Study of the Recurring Dimming Region Detected at AR 11305 Using the Coronal Dimming Tracker (CoDiT), ApJ, 762, 91 CrossRefGoogle Scholar
Lang, K. R. 2009, The Sun from Space Astronomy and Astrophysics Library, Springer-Verlag Berlin Heidelberg, 253 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., Duncan, D. W., Edwards, C. G., et al. 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Solar Phys., 275, 17 CrossRefGoogle Scholar
Mason, J. P., Woods, T. N., Caspi, A., Thompson, B. J., & Hock, R. A. 2014, Mechanisms and Observations of Coronal Dimming for the 2010 August 7 Event, ApJ, 789, 61 CrossRefGoogle Scholar
Mason, J. P., Woods, T. N., Webb, D., Thompson, B. J., Colaninno, R. C., & Vourlidas, A. 2016, Relationship of Coronal Dimming Slope and Depth to Coronal Mass Ejection Velocity and Mass, ApJ, in review.CrossRefGoogle Scholar
McIntosh, S. W., Leamon, R. J., Davey, A. R., & Wills-Davey, M. J. 2007, The Posteruptive Evolution of a Coronal Dimming, ApJ, 660, 1653 CrossRefGoogle Scholar
National Research Council, 2008, Severe Space Weather Events - Understanding Societal and Economic Impacts, chair Baker, D.N., The National Academies Press, Washington, DC Google Scholar
Neupert, W. M. 1968, Comparison of Solar X-Ray Line Emission with Microwave Emission during Flares, ApJ, 153, L59 CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, The Solar Dynamics Observatory (SDO), Solar Phys., 275, 3 CrossRefGoogle Scholar
Raftery, C. L., Gallagher, P. T., Milligan, R. O., & Klimchuk, J. A. 2009, Multi-wavelength observations and modelling of a canonical solar flare, A&A, 494, 1127 Google Scholar
Reinard, A. A. & Biesecker, D. A. 2008, Coronal Mass Ejection-Associated Coronal Dimmings, ApJ, 674, 576 CrossRefGoogle Scholar
Reinard, A. A. & Biesecker, D. A. 2009, The Relationship between Coronal Dimming and Coronal Mass Ejection Properties, ApJ, 705, 914 CrossRefGoogle Scholar
Russell, C. T., Luhmann, J. G., & Jian, L. K. 2010, How unprecedented a solar minimum?, Rev. Geophys., 48, RG2004, doi: 10.1029/2009RG000316 CrossRefGoogle Scholar
Rust, D. M. 1983, Coronal disturbances and their terrestrial effects/Tutorial Lecture, Space Sci. Rev., 34, 21 CrossRefGoogle Scholar
Rust, D. M. & Hildner, E. 1976, Expansion of an X-ray coronal arch into the outer corona, Solar Phys., 48, 381 CrossRefGoogle Scholar
Sterling, A. C. & Hudson, H. S. 1997, Yohkoh SXT Observations of X-Ray “Dimming” Associated with a Halo Coronal Mass Ejection, ApJ, 491, L55 CrossRefGoogle Scholar
Sterling, A. C., Hudson, H. S., Thompson, B. J., & Zarro, D. M. 2000, Yohkoh SXT and SOHO EIT Observations of Sigmoid-to-Arcade Evolution of Structures Associated with Halo Coronal Mass Ejections, ApJ, 532 CrossRefGoogle Scholar
Svestka, Z. 1989, Solar flares - The gradual phase, Solar Phys., 121, 399 CrossRefGoogle Scholar
Thompson, B. J., Cliver, E. W., Nitta, N. V., Delannée, C., & Delaboudiniere, J.-P. 2000, Coronal dimmings and energetic CMEs in April-May 1998, Geophys. Res. Lett., 27, 1431 CrossRefGoogle Scholar
Warren, H. P. & Doschek, G. A. 2005, Reconciling Hydrodynamic Simulations with Spectroscopic Observations of Solar Flares, ApJ, 618, L157 CrossRefGoogle Scholar
Woods, T. N., 2014, Extreme Ultraviolet Late-Phase Flares: Before and During the Solar Dynamics Observatory Mission, Solar Phys., doi: 10.1007/s11207-014-0483-0 CrossRefGoogle Scholar
Woods, T. N., Eparvier, F. G., Hock, R., Jones, A. R., Woodraska, D., Judge, D., Didkovsky, L., Lean, J., et al. 2012, Extreme Ultraviolet Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and MoDel Developments, Solar Phys., 275, 115 CrossRefGoogle Scholar
Woods, T. N., Hock, R., Eparvier, F., Jones, A. R., Chamberlin, P. C., Klimchuk, J. A., Didkovsky, L., Judge, D., et al. 2011, New solar extreme ultraviolet irradiance observations during flares, ApJ, 739, 59, doi: 10.1088/0004-637X/739/2/59 CrossRefGoogle Scholar
Zarro, D. M., Sterling, A. C., Thompson, B. J., Hudson, H. S., & Nitta, N. V. 1999, SOHO EIT Observations of Extreme-Ultraviolet “Dimming” Associated with a Halo Coronal Mass Ejection, Ap. Lett., 520, 139 CrossRefGoogle Scholar
Zhukov, A. N. & Auchère, F. 2004, On the nature of EIT waves, EUV dimmings and their link to CMEs, A&A, 427, 705 Google Scholar