Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-25T17:23:01.092Z Has data issue: false hasContentIssue false

Solar differential rotation: hints to reproduce a near-surface shear layer in global simulations

Published online by Cambridge University Press:  18 July 2013

G. Guerrero
Affiliation:
Solar Physics, HEPL, Stanford University, 452 Lomita mall, Stanford, CA, 94305-4085 email: [email protected], [email protected]
P. K. Smolarkiewicz
Affiliation:
National Center for Atmospheric Research, Boulder, CO, 80307, USA email: [email protected]
A. Kosovichev
Affiliation:
Solar Physics, HEPL, Stanford University, 452 Lomita mall, Stanford, CA, 94305-4085 email: [email protected], [email protected]
N. Mansour
Affiliation:
NASA Ames Research Center, Moffett Field, Mountain View, CA 94040, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Convective turbulent motions in the solar interior, as well as the mean flows resulting from them, determine the evolution of the solar magnetic field. With the aim to get a better understanding of these flows we study anelastic rotating convection in a spherical shell whose stratification resembles that of the solar interior. This study is done through numerical simulations performed with the EULAG code. Due to the numerical formulation, these simulations are known as implicit large eddy simulations (ILES), since they intrinsically capture the contribution of, non-resolved, small scales at the same time maximizing the effective Reynolds number. We reproduce some previous results and find a transition between buoyancy and rotation dominated regimes which results in anti-solar or solar like rotation patterns. Even thought the rotation profiles are dominated by Taylor-Proudman columnar rotation, we are able to reproduce the tachocline and a low latitude near-surface shear layer. We find that simulations results depend on the grid resolution as a consequence of a different sub-grid scale contribution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Brandenburg, A. 2005, ApJ, 625, 539 CrossRefGoogle Scholar
De Rosa, M. L. Gilman, P. A., & Toomre, J. 2002, ApJ, 581, 1356 CrossRefGoogle Scholar
Domaradzki, J. A., Xiao, Z., & Smolarkiewicz, P. K. 2003, Phys. Fluids, 15, 3890 CrossRefGoogle Scholar
Gilman, P. A., 1977, GApFD, 8, 93 Google Scholar
Guerrero, G. & de Gouveia Dal Pino, E. M., 2008, A&A, 485, 267 Google Scholar
Guerrero, G. & Käpylä, P. J. 2011, A&A, 533, A40 Google Scholar
Guerrero, G. Smolarkiewicz, P. K., Kosovichev, A., & Mansour, N. 2013, ApJ, in preparationGoogle Scholar
Ghizaru, M. Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJL, 715, L133 CrossRefGoogle Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 474, 239 Google Scholar
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P. 2011, A&A, 531, A162 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A., 2011b, AN, 322, 883 Google Scholar
Lipps, F. B. & Hemler, R. S., 1982, J.Atmos.Sci. 39, 2192 2.0.CO;2>CrossRefGoogle Scholar
Lipps, F. B., 1990, J.Atmos.Sci. 47, 1794 2.0.CO;2>CrossRefGoogle Scholar
Margolin, L. G. & Rider, W. J., 2002, IJNMF, 39, 821 Google Scholar
Miesch, M. S., Brun, A. S., & Toomre, J., 2006, ApJ, 641, 618 CrossRefGoogle Scholar
Miesch, M. S. & Hindman, B. W. 2011, ApJ, 743, 79 CrossRefGoogle Scholar
Pipin, V. V. & Kosovichev, A. G., 2011, ApJ, 741, 1 CrossRefGoogle Scholar
Prusa, J. M., Smolarkiewicz, P. K., & Wyszogrodzki, A. A., 2008, Comput. Fluids 37 9, 1193 CrossRefGoogle Scholar
Racine, É., Charbonneau, P., Ghizaru, M., Bouchat, A., & Smolarkiewicz, P. K. 2011, ApJL, 735, 46 CrossRefGoogle Scholar
Smolarkiewicz, P. K. Margolin, L. G., & Wyszogrodzki, A. A., 2001, J.Atmos.Sci, 58, 349 2.0.CO;2>CrossRefGoogle Scholar
Smolarkiewicz, P. K., 2006, IJNMF, 50, 1123 Google Scholar
Smolarkiewicz, P. K. & Margolin, L. G., 2007, Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, 2007, 413 CrossRefGoogle Scholar