Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T17:11:37.697Z Has data issue: false hasContentIssue false

Small-scale dynamo action in primordial halos

Published online by Cambridge University Press:  18 July 2013

Jennifer Schober
Affiliation:
Heidelberg University, Center for Astronomy, Institute for Theoretical Astrophysics, Albert-Ueberle-Str 2, 69120 Heidelberg, Germany
Dominik R. G. Schleicher
Affiliation:
Göttingen University, Institute for Astrophysics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Ralf S. Klessen
Affiliation:
Heidelberg University, Center for Astronomy, Institute for Theoretical Astrophysics, Albert-Ueberle-Str 2, 69120 Heidelberg, Germany
Christoph Federrath
Affiliation:
Monash University, School of Mathematical Sciences, Monash Centre for Astrophysics, Clayton Vic 3800, Australia
Stefano Bovino
Affiliation:
Göttingen University, Institute for Astrophysics, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Simon Glover
Affiliation:
Heidelberg University, Center for Astronomy, Institute for Theoretical Astrophysics, Albert-Ueberle-Str 2, 69120 Heidelberg, Germany
Robi Banerjee
Affiliation:
Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first galaxies form due to gravitational collapse of primordial halos. During this collapse, weak magnetic seed fields get amplified exponentially by the small-scale dynamo - a process converting kinetic energy from turbulence into magnetic energy. We use the Kazantsev theory, which describes the small-scale dynamo analytically, to study magnetic field amplification for different turbulent velocity correlation functions. For incompressible turbulence (Kolmogorov turbulence), we find that the growth rate is proportional to the square root of the hydrodynamic Reynolds number, Re1/2. In the case of highly compressible turbulence (Burgers turbulence) the growth rate increases proportional to Re1/3. With a detailed chemical network we are able to follow the chemical evolution and determine the kinetic and magnetic viscosities (due to Ohmic and ambipolar diffusion) during the collapse of the halo. This way, we can calculate the growth rate of the small-scale dynamo quantitatively and predict the evolution of the small-scale magnetic field. As the magnetic energy is transported to larger scales on the local eddy-timescale, we obtain an estimate for the magnetic field on the Jeans scale. Even there, we find that equipartition with the kinetic energy is reached on small timescales. Dynamically relevant field structures can thus be expected already during the formation of the first objects in the Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bachelor, G. K. 1953, Cambridge University Press The theory of homogeneous turbulenceGoogle Scholar
Biermann, L. 1950, Zeitschrift Naturforschung Teil A 5, 65 Google Scholar
Boldyrev, S., Nordlund, A., & Padoan, P. 2002, ApJ 573, 678 Google Scholar
Bovino, S., Tacconi, M., Gianturco, F. A., Galli, D., & Palla, F. 2011b, ApJ 731, 107 Google Scholar
Bovino, S., Tacconi, M., Gianturco, F. A., & Galli, D. 2011a, A&A 529, A140 Google Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep. 417Google Scholar
Burgers, J. M. 1948, Advances in Applied Mechanics, Elsevier, 1Google Scholar
Choudhuri, A. R. 1998, Cambrigde University Press The physics of fluids and plasmasGoogle Scholar
Cyburt, R. H. 2004, Phys. Rev. D 70, 023505 CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W. & Mac Low, M.-M. 2010, A&A 512, A81 Google Scholar
Federrath, C., Chabrier, G., Schober, J., Banerjee, R., Klessen, R. S., & Schleicher, D. R. G. 2011b, PRL 107, 114504 Google Scholar
Federrath, C., Sur, S., Schleicher, D. R. G., Banerjee, R., & Klessen, R. S. 2011a, ApJ 731, 62 CrossRefGoogle Scholar
Glover, S. C. O. & Savin, D. W. 2009, MNRAS 393, 911 Google Scholar
Greif, T. H., Johnson, J. L., Klessen, R. S., & Bromm, V. 2008, MNRAS 387, 1021 Google Scholar
Kolmogorov, A. 1941, Akademiia Nauk SSSR Doklady 30, 301 Google Scholar
Larson, R. B. 1981, MNRAS 194, 809 Google Scholar
Latif, M. A., Schleicher, D. R. G., Schmidt, W., & Niemeyer, J. 2012, ArXiv 1210.1802Google Scholar
Ossenkopf, V. & Mac Low, M.-M. 2002, A&A 390, 307 Google Scholar
Peters, T., Schleicher, D. R. G., Klessen, R. S., Banerjee, R., Federrath, C., Smith, R. J., & Sur, S. 2012, ApJ acceptedGoogle Scholar
Pinto, C., Galli, D., & Bacciotti, F. 2008, A&A 484, 1 Google Scholar
Pinto, C. & Galli, D. 2008, A&A 484, 17 Google Scholar
Schekochihin, A. A., Cowley, S. C., Hammett, G. W., Maron, J. L., & McWilliams, J. C. 2002, NJPh 4, 84 CrossRefGoogle Scholar
Schleicher, D. R. G., Galli, D., Glover, S. C. O., Banerjee, R., Palla, F., Schneider, R., & Klessen, R. S. 2009, ApJ 703, 1096 Google Scholar
Schleicher, D. R. G., Banerjee, R., Sur, S., Arshakian, T. G., Klessen, R. S., Beck, R., & Spaans, M. 2010, A&A 522, A115 Google Scholar
Schmidt, W., Federrath, C., Hupp, M., Kern, S., & Niemeyer, J. C. 2009, A&A 494, 127 Google Scholar
Schober, J., Schleicher, D., Federrath, C., Klessen, R. S., & Banerjee, R. 2012a, Phys. Rev. E 85, 026303 CrossRefGoogle Scholar
Schober, J., Schleicher, D., Federrath, C., Glover, S., Klessen, R. S., & Banerjee, R. 2012b, ApJ 754, 99 Google Scholar
Schober, J., Schleicher, D., Bovino, S., & Klessen, R. S. 2012c, Phys. Rev. E submittedGoogle Scholar
She, Z.-S. & Leveque, E. 1994, PRL 72, 336 CrossRefGoogle Scholar
Sigl, G., Olinto, A. V., & Jedamzik, K. 1997, Phys. Rev. D 55, 4582 Google Scholar
Sur, S., Federrath, C., Schleicher, D. R. G., Banerjee, R., & Klessen, R. S. 2012, MNRAS 423, 3148 Google Scholar
Turner, M. S. & Widrow, L. M. 1988, Phys. Rev. D 37, 2743 Google Scholar
Vainshtein, S. I. & Zeldovich, Y. B. 1972, Sov. Phys. Usp. 15, 159 Google Scholar
Wardle, M. & Ng, C. 1999, MNRAS 303, 239 Google Scholar
Wise, J. H., Turk, M. J., & Abel, T. 2008, ApJ 682, 745 Google Scholar
Xu, H., Li, H., Collins, D. C., Li, S., & Norman, M. L. 2011, ApJ 739, 77 Google Scholar
Xu, H., O'Shea, B. W., Collins, D. C., Norman, M. L., Li, H., & Li, S. 2008, ApJ 688, L57 Google Scholar