Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T20:52:06.312Z Has data issue: false hasContentIssue false

The Slow Growth of Massive Galaxies in Rapidly Growing Dark Matter Halos

Published online by Cambridge University Press:  13 April 2010

Michael J. I. Brown
Affiliation:
School of Physics, Monash University, Clayton, Victoria 3800, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In cold dark matter cosmologies, the most massive dark matter halos are predicted to undergo rapid growth at z < 1. While there is the expectation that massive galaxies will also rapidly grow via merging, recent observational studies conclude that the stellar masses of the most massive galaxies grow by just ~ 30% at z < 1. We have used the observed space density and clustering of z < 1 red galaxies in Boötes to determine how these galaxies populate dark matter halos. In the most massive dark matter halos, central galaxy stellar mass is proportional to halo mass to the power of a ~1/3 and much of the stellar mass resides within satellite galaxies. As a consequence, the most massive galaxies grow slowly even though they reside within rapidly growing dark matter halos.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Brown, M. J. I., Dey, A., Jannuzi, B. T., Brand, K., Benson, A. J., Brodwin, M., Croton, D. J., & Eisenhardt, P. R. 2007, ApJ, 654, 858Google Scholar
Brown, M. J. I., et al. 2008, ApJ, 682, 937CrossRefGoogle Scholar
Bundy, K., et al. 2006, ApJ, 651, 120Google Scholar
Conroy, C., et al. 2007, ApJ, 654, 153CrossRefGoogle Scholar
De Lucia, G., Springel, V., White, S. D. M., Croton, D., & Kauffmann, G. 2006, MNRAS, 366, 499Google Scholar
Lacey, C. & Cole, S. 1993, MNRAS, 262, 627CrossRefGoogle Scholar
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745CrossRefGoogle Scholar
Lin, Y.-T. & Mohr, J. J. 2004, ApJ, 617, 879Google Scholar
Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M., & Brinkmann, J. 2006, MNRAS, 368, 715Google Scholar
Peacock, J. A. & Smith, R. E. 2000, MNRAS, 318, 1144Google Scholar
Trager, S. C., Faber, S. M., Worthey, G., & González, J. J. 2000, AJ, 120, 165CrossRefGoogle Scholar
van Dokkum, P. G. 2005, AJ, 130, 2647CrossRefGoogle Scholar
White, M., Zheng, Z., Brown, M. J. I., Dey, A., & Jannuzi, B. T. 2007, ApJL, 655, L69Google Scholar
Zheng, Z. 2004, ApJ, 610, 61Google Scholar