Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T02:16:02.575Z Has data issue: false hasContentIssue false

Slipping magnetic reconnection and complex evolution of a flux rope and flare ribbons

Published online by Cambridge University Press:  09 September 2016

Ting Li
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
Jun Zhang
Affiliation:
Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Abundant observations in recent years show that the flares are more complex than the 2D standard flare model presents. This proposes a challenge to the 2D flare model and 3D flare model has been developed. We report the complex evolution of flare ribbons and a flux rope in a C8.9 flare event. The two ribbons slipped in opposite directions along the neutral line and the eastern ribbon seemed a hook-like structure. The flare loops were crossed each other, composing a “bi-fan” system. The slipping magnetic reconnection is involved in the flare and leads to slipping motion of flare ribbons and complex evolution of flare loops. Overlying the flare loops, a large-scale flux rope was erupted and meanwhile the eastern end of the flux rope changed with time and slipped along the hook-like ribbon. The fine structures of the flux rope delineated a “triangle-flag” surface, which may imply one-half of the coronal quasi-separatrix layers that surrounds a flux rope. We suggest that the heating process of slipping magnetic reconnection during the flare caused the apparent motion of the flux rope ends.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Asai, A., Yokoyama, T., & Shimojo, M., et al. 2004, ApJ, 611, 557 CrossRefGoogle Scholar
Aulanier, G., Janvier, M., & Schmieder, B. 2012, A&A, 543, A110 Google Scholar
Démoulin, P., Henoux, J. C., Priest, E. R., & Mandrini, C. H. 1996, A&A, 308, 643 Google Scholar
Dudík, J., Janvier, M., & Aulanier, G., et al. 2014, ApJ, 784, 144 Google Scholar
Janvier, M., Aulanier, G., Pariat, E., & Démoulin, P. 2013, A&A, 555, A77 Google Scholar
Janvier, M., Aulanier, G., & Démoulin, P. 2015, Sol. Phys., 63 Google Scholar
Li, T. & Zhang, J. 2013, ApJL, 778, L29 CrossRefGoogle Scholar
Li, T. & Zhang, J. 2014, ApJL, 791, L13 CrossRefGoogle Scholar
Li, T. & Zhang, J. 2015, ApJL, 804, L8 CrossRefGoogle Scholar
Lemen, J. R., Title, A. M., & Akin, D. J., et al. 2012, Sol. Phys., 275, 17 CrossRefGoogle Scholar
Patsourakos, S., Vourlidas, A., & Stenborg, G. 2013, ApJ, 764, 125 CrossRefGoogle Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3 Google Scholar
Priest, E. R. & Démoulin, P. 1995, J. Geophys. Res., 100, 23443 CrossRefGoogle Scholar
Reid, H. A. S., Vilmer, N., Aulanier, G., & Pariat, E. 2012, A&A, 547, A52 Google Scholar
Schmieder, B., Forbes, T. G., Malherbe, J. M., & Machado, M. E. 1987, ApJ, 317, 956 CrossRefGoogle Scholar
Shibata, K. & Magara, T. 2011, Living Reviews in SolarPhysics, 8, 6 CrossRefGoogle Scholar
Titov, V. S. 2007, ApJ, 660, 863 CrossRefGoogle Scholar
Zhang, J., Yang, S. H., & Li, T. 2015, A&A, 580, A2 Google Scholar