Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T23:20:00.315Z Has data issue: false hasContentIssue false

Simulations of the reionization of the clumpy intergalactic medium with a novel particle-based two-moment radiative transfer scheme

Published online by Cambridge University Press:  20 January 2023

Tsang Keung Chan
Affiliation:
Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK email: [email protected] Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Alejandro Benitez-Llambay
Affiliation:
Dipartimento di Fisica G. Occhialini, Università degli Studi di Milano Bicocca, Piazza della Scienza, 3 I-20126 Milano MI, Italy
Tom Theuns
Affiliation:
Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK email: [email protected] Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Carlos Frenk
Affiliation:
Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK email: [email protected] Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The progress of cosmic reionization depends on the presence of over-dense regions that act as photon sinks. Such sinks may slow down ionization fronts as compared to a uniform intergalactic medium (IGM) by increasing the clumping factor. We present simulations of reionization in a clumpy IGM resolving even the smallest sinks. The simulations use a novel, spatially adaptive and efficient radiative transfer implementation in the SWIFT SPH code, based on the two-moment method. We find that photon sinks can increase the clumping factor by a factor of ∼10 during the first ∼100 Myrs after the passage of an ionization front. After this time, the clumping factor decreases as the smaller sinks photoevaporate. Altogether, photon sinks increase the number of photons required to reionize the Universe by a factor of η ∼2, as compared to the homogeneous case. The value of η also depends on the emissivity of the ionizing sources.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Becker, G. D., D’Aloisio, A., Christenson, H. M., Zhu, Y.,Worseck, G. & Bolton, J. S. 2021, MNRAS, 508, 1853 Google Scholar
Benitez-Llambay, A. 2015, py-sphviewer: Py-SPHViewerv1.0.0, doi:10.5281/zenodo.21703 CrossRefGoogle Scholar
Benson, A. J., Frenk, C. S., Lacey, C. G., Baugh, C. M. & Cole, S. 2002, MNRAS, 333, 177 CrossRefGoogle Scholar
Bullock, J. S., Kravtsov, A. V. & Weinberg, D. H. 2000, ApJ, 539, 517Google Scholar
Cain, C., D’Aloisio, A., Gangolli, N. & Becker, G. D. 2021, ApJL, 917, L37 Google Scholar
Chan, T. K., Theuns, T., Bower, R. & Frenk, C. 2021, MNRAS, 505, 5784 CrossRefGoogle Scholar
Ciardi, B., Scannapieco, E., Stoehr, F., Ferrara, A., Iliev, I. T., & Shapiro, P. R. 2006, MNRAS, 366, 689 CrossRefGoogle Scholar
D’Aloisio, A., McQuinn, M., Davies, F. B. & Furlanetto, S. R., 2018, MNRAS, 473, 560 CrossRefGoogle Scholar
D’Aloisio, A., McQuinn, M., Trac, H., Cain, C. & Mesinger, A. 2020, ApJ, 898, 149 CrossRefGoogle Scholar
Davies, F. B., Bosman, S. E. I., Furlanetto, S. R., Becker, G. D. & D’Aloisio, A. 2021, ApJL, 918, L35Google Scholar
Efstathiou, G. 1992, MNRAS, 256, 43P Google Scholar
Emberson, J. D., Thomas, R. M. & Alvarez, M. A., 2013, ApJ, 763, 146 CrossRefGoogle Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J. & Tozzi, P. 2000, ApJL, 524, L19 CrossRefGoogle Scholar
Hahn, O. & Abel, T. 2011, MNRAS, 415, 2101 Google Scholar
Haiman, Z., Abel, T. & Madau, P. 2001, ApJ, 551, 599 Google Scholar
Okamoto, T., Gao, L. & Theuns, T., 2008, MNRAS, 390, 920 Google Scholar
Park, H., Shapiro, P. R., Choi, J.-H., Yoshida, N., Hirano, S. & Ahn, K. 2016, ApJ, 831, 86Google Scholar
Peebles, P. J. E. 1993, Principles of Physical Cosmology by P.J.E. Peebles. Princeton University Press, 1993. ISBN: 978-0-691-01933-8Google Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, A16 Google Scholar
Robertson, B. E. 2021, arXiv, 2110.13160Google Scholar
Schaller, M., Gonnet, P., Chalk, A. B. G. & Draper, P. W. 2016, arXiv, 1606.02738Google Scholar
Shapiro, P. R. & Giroux, M. L. 1987, ApJL, 321, L107 CrossRefGoogle Scholar
Sharma, M., Theuns, T., Frenk, C., Bower, R., Crain, R., Schaller, M., Schaye, J., 2016, MNRAS, 458, L94 CrossRefGoogle Scholar
Theuns, T. 2021, MNRAS, 500, 2741 Google Scholar