Article contents
Simulation of Global Solar Flares and their Effects on Space Weather by using a Laser - Produced Plasma Clouds
Published online by Cambridge University Press: 01 November 2006
Extract
Solar flares are of great fundamental and practical interest. In some events the energy release might exceed 1026J Tsurutani et al. (2003) and accompanying CME courses extremely severe magnetic storm. Because of very rare occurrence of such global flares a laboratory simulation appears to be an alternative that could provide experimental data necessary for physical understanding of this phenomenon and for verifying theoretical models. Flare involves processes on many widely varying spatial and time scales. In laboratory only some parts of the whole evolution could be attempted for simulation. The present work is focused on the last stage of eruption when a magnetic loop filled with heated plasma is ejected away from the Sun, either itself or pushed by an upcoming jet. The geometry of a flare loop suggests that a magnetic dipole and laser-produced plasma could be used to simulate this structure Nikitin & Ponomarenko (1995). In the present work similarity criteria that relate laboratory parameters to the natural phenomena, experimental set up and preliminary results are presented.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 2 , Symposium S233: Solar Activity and its Magnetic Origin , March 2006 , pp. 59 - 60
- Copyright
- © 2006 International Astronomical Union
- 1
- Cited by