Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T18:54:11.037Z Has data issue: false hasContentIssue false

Significant new planetary nebula discoveries as powerful probes of the LMC

Published online by Cambridge University Press:  01 July 2008

Warren A. Reid
Affiliation:
Dept of Physics, Macquarie University North Ryde, Sydney, NSW 2190, Australia email: [email protected]
Quentin A. Parker
Affiliation:
Dept of Physics, Macquarie University North Ryde, Sydney, NSW 2190, Australia email: [email protected] Anglo-Australian Observatory, PO Box 296 Epping, NSW 1710, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our discovery and analysis of 452 new planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) has tripled the number of known LMC PNe, providing a powerful new resource for probing the kinematics of the LMC as well as contributing fresh insight into the PN luminosity function (PNLF) which we now extend to over 10 magnitudes in [O iii] and Hα. These discoveries have resulted from a new, deep (R ≡ 22), high resolution Hα map of the central 25 deg2 of the LMC, achieved by a process of multi-exposure median co-addition of a dozen 2-hour exposures. The resulting map is at least 1 magnitude deeper than the best wide-field narrow-band LMC images currently available and has proven a major resource for the discovery of emission objects of all kinds. As a result, the near complete sample of the PN population in the central 25 deg2 of the LMC has permitted truly meaningful quantitative determinations of the PNLF, distribution, abundances and kinematics. We briefly describe the importance of these PN discoveries, the additional spectroscopic confirmation of >2,000 compact emission sources, flux calibration, the newly derived electron temperatures and electron densities.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Ciardullo, R. & Jacoby, G. H. 1999, ApJ, 515, 191CrossRefGoogle Scholar
Iben, I. Jr. 1995, Phys.Reports, 250, 2CrossRefGoogle Scholar
Jacoby, G. H., Walker, A. R., & Ciardullo, R. 1990, ApJ, 365, 471CrossRefGoogle Scholar
Kaler, J. B. & Jacoby, G. H. 1990, ApJ, 362, 491CrossRefGoogle Scholar
Keller, S. C. & Wood, P. R. 2006, ApJ, 642, 834CrossRefGoogle Scholar
Maciel, W. J. & Costa, R. D. 2003, in Kwok, S., Dopita, M., & Sutherland, R. (eds.), Planetary Nebulae: Their Evolution and Role in the Universe, IAU Conf.Proc. 209 (ASP), p. 551Google Scholar
Meatheringham, S. J., Dopita, M. A., & Morgan, D. H. 1988, ApJ, 329, 166CrossRefGoogle Scholar
Osterbrock, D. E. 1989, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Mill Valley: University Science Books), p. 118CrossRefGoogle Scholar
Osterbrock, D. E. & Ferland, G. J. 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei (Sausalito, CA: University Science Books)Google Scholar
Parker, Q. A., Acker, A., Frew, D. J., & Reid, W. A. 2006, in Barlow, M.J. & Méndez, R.H. (eds.), Planetary Nebulae in our Galaxy and Beyond, IAU Conf.Proc. 234 (Cambridge: CUP), p. 1Google Scholar
Reid, W. A. & Parker, Q. A. 2006a, MNRAS, 365, 401CrossRefGoogle Scholar
Reid, W. A. & Parker, Q. A. 2006b, MNRAS, 373, 521CrossRefGoogle Scholar
Reid, W. A. 2008, PhD Thesis, Macquarie University, SydneyGoogle Scholar
Shaw, R. A. & Dufour, R. J. 1995, PASP, 107, 896CrossRefGoogle Scholar
Stasińska, G. 2002, Rev. Mexicana AyA 12, 62Google Scholar
Terzian, Y. 1997, in Habing, H. J. & Lamers, H. J. G. L. M. (eds.), Planetary Nebulae, IAU Conf.Proc. 180 (Dordrecht: Kluwer), p. 29CrossRefGoogle Scholar
van der Marel, R. & Cioni, M. 2001, AJ, 122, 1807CrossRefGoogle Scholar
Zhang, Y., Liu, X.-W., Wesson, R., Storey, P. J., Liu, Y., & Danziger, I. J. 2004, MNRAS, 351, 935CrossRefGoogle Scholar