Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:22:51.205Z Has data issue: false hasContentIssue false

A shallow water analogue of asymmetric core-collapse, and neutron star kick/spin

Published online by Cambridge University Press:  05 September 2012

Thierry Foglizzo
Affiliation:
Lab. AIM Paris-Saclay, CEA/Irfu Univ. Paris-Diderot CNRS/INSU, 91191, France
Frédéric Masset
Affiliation:
Lab. AIM Paris-Saclay, CEA/Irfu Univ. Paris-Diderot CNRS/INSU, 91191, France Instituto de Ciencias Fisicas, UNAM, Av. Universidad s/n, 62210 Cuernavaca, Mor., Mexico
Jérôme Guilet
Affiliation:
Lab. AIM Paris-Saclay, CEA/Irfu Univ. Paris-Diderot CNRS/INSU, 91191, France DAMTP, University of Cambridge, Centre for Math. Sciences, Cambridge CB3 0WA, UK
Gilles Durand
Affiliation:
Lab. AIM Paris-Saclay, CEA/Irfu Univ. Paris-Diderot CNRS/INSU, 91191, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars end their life with the gravitational collapse of their core and the formation of a neutron star. Their explosion as a supernova depends on the revival of a spherical accretion shock, located in the inner 200km and stalled during a few hundred milliseconds. Numerical simulations suggest that the large scale asymmetry of the neutrino-driven explosion is induced by a hydrodynamical instability named SASI. Its non radial character is able to influence the kick and the spin of the resulting neutron star. The SWASI experiment is a simple shallow water analog of SASI, where the role of acoustic waves and shocks is played by surface waves and hydraulic jumps. Distances in the experiment are scaled down by a factor one million, and time is slower by a factor one hundred. This experiment is designed to illustrate the asymmetric nature of core-collapse supernova.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bethe, H. A. & Wilson, J. R. 1985, ApJ, 295, 14CrossRefGoogle Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971CrossRefGoogle Scholar
Blondin, J. M. & Mezzacappa, A. 2007, Nature, 445, 58CrossRefGoogle Scholar
Fernandez, R. 2010, ApJ, 725, 1563CrossRefGoogle Scholar
Fernandez, R. & Thompson, C. 2009, ApJ, 697, 1827CrossRefGoogle Scholar
Foglizzo, T. 2009, ApJ, 694, 820CrossRefGoogle Scholar
Foglizzo, T., Galletti, P., Scheck, L., & Janka, H.-Th. 2007, ApJ 654, 1006CrossRefGoogle Scholar
Foglizzo, T., Masset, F., Guilet, J., & Durand, G. 2012, Phys. Rev. Lett. 108, 051103 (FMGD)CrossRefGoogle Scholar
Guilet, J. & Foglizzo, T. 2012, MNRAS 421, 546Google Scholar
Guilet, J., Sato, J., & Foglizzo, T. 2010, ApJ 713, 1350CrossRefGoogle Scholar
Iwakami, W., Kotake, K., Ohnishi, N., Yamada, S., & Sawada, K. 2009, ApJ, 700, 232CrossRefGoogle Scholar
Janka, H.-T. & Müller, E. 1996, A&A, 306, 167Google Scholar
Marek, A. & Janka, H.-Th. 2009, ApJ, 694, 664CrossRefGoogle Scholar
Nordhaus, J. & Brandt, T., Burrows, A., Livne, E., Ott, C. 2010, Phys. Rev. D 82, 103016.CrossRefGoogle Scholar
Rantsiou, E., Burrows, A., Nordhaus, J., & Almgren, A. 2011, ApJ, 732, 57.CrossRefGoogle Scholar
Scheck, L., Plewa, T., Janka, H.-Th., Kifonidis, K., & Müller, E. 2004, Phys. Rev. Lett., 92, 011103CrossRefGoogle Scholar
Scheck, L., Kifonidis, K., Janka, H. T., & Müller, E. 2006, A&A, 457, 963Google Scholar
Scheck, L., Janka, H.-Th., Foglizzo, T., & Kifonidis, K. 2008, A&A, 477, 931Google Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2010, ApJ 725, L106.CrossRefGoogle Scholar
Yamasaki, T. & Foglizzo, T. 2008, ApJ, 679, 607CrossRefGoogle Scholar