No CrossRef data available.
Published online by Cambridge University Press: 08 November 2005
Massive protostars are generally enshrouded in dust, so that most of their radiation emerges in the far infrared. For protostars embedded in opaque, spherical cores, the spectral energy distribution (SED) is determined by two distance-independent parameters, the luminosity-to-mass ratio, $L/M_c$, and the surface density of the core, $\Sigma=M_c/(\pi R_c^2)$, where $R_c$ is the radius of the core. Chakrabarti & McKee (2005a) have derived an approximate analytic expression for the SED that agrees well with numerical results. It is generally not possible to infer the power-law of the density from the SED of a massive protostar. Masses and accretion rates are inferred for several well-studied sources.