Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T05:23:22.907Z Has data issue: false hasContentIssue false

The secular evolution of M83 central bulge

Published online by Cambridge University Press:  01 July 2007

H. Dottori
Affiliation:
Instituto de Física, UFRGS, cp: 15051, cep: 91501-970, Porto Alegre, Brazil email: [email protected]
R. J. Diaz
Affiliation:
Gemini Observatory, Southern Operations Center, Chile CASLEO, CONICET, Argentina e-mail: [email protected]
M. P. Agüero
Affiliation:
Observatorio Astronómico de Córdoba, Laprida 854, Córdoba, Argentina
D. Mast
Affiliation:
Observatorio Astronómico de Córdoba, Laprida 854, Córdoba, Argentina
I. Rodrigues
Affiliation:
UNIVAP, São José dos Campos, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The luminosity profile of M 83 bulge can be traced by a de Vaucouleurs' law between ≈ 200 pc and ≈ 800 pc. The inner part can be fitted by a n = −1/2 Sérsic profile. Also the IR (J − K) color shows difference between the periphery and the central part of the bulge, both properties indicating the presence of a pseudobulge. Previous Gemini-S 3-D, Paβ spectroscopy of the central ≈ 5″×13″ revealed spider like diagrams indicating disk like motion around three extended masses identified respectively with the optical nucleus (ON), with the center of the bulge isophotes, similar to the CO kinematical center (KC), and with a condensation hidden at optical wavelengths (HN), coincident with the largest lobe in 10 μm emission, most probably a cannibalized satellite. Numerical simulations show that they suffer strong evaporation and they would merge engulfing also the star forming arc in few hundred Myr, increasing the mass at the kinematical center by a factor o five or more. Upper mass limit of putative Black Holes associated to ON, KC and HN are a few ten thousand to a million solar masses. GMOS+Gemini imaging and spectroscopy of a chain of radio sources has yield no optical high redshift counterparts. This radio sources are aligned with ON, neither associated to SN nor to HII regions and might point to an older similar phenomenon, which left behind a kick-off spur.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Adamson, A., Adams, D., & Warwick, R. 1987, MNRAS 224, 367CrossRefGoogle Scholar
Bonning, E., Shields, G., & Salviander, S. 2007, ApJ 666, L13CrossRefGoogle Scholar
Diaz, R., Dottori, H., Mediavilla, E., Aguero, M., & Mast, D. 2006, New Astron. Rev. 49, 547CrossRefGoogle Scholar
Diaz, R., Dottori, H., Aguero, M., Mediavilla, E., Rodrigues, I., & Mast, D. 2006, ApJ 652, 1122.CrossRefGoogle Scholar
Dottori, H., Diaz, R., Rodrigues, I., Aguero, M., & Mast, D. 2007, in: Karas, V. & Matt, K. (eds.), Black Holes from Stars to Galaxies, Proc. IAU Symp. No. 238 (Cambridge: CUP), p. 277Google Scholar
Elmegreen, D., Chromey, F., & Warren, A. 1998, AJ 116, 2834CrossRefGoogle Scholar
Gualandris, A. & Merrit, D. 2007, eprint arXiv07080771Google Scholar
Jarret, T., et al. 2003, AJ 125, 525.CrossRefGoogle Scholar
Jensen, E., Talbot, R., & Dufour, R. 1981, ApJ 243, 716CrossRefGoogle Scholar
Maddox, L, Cowan, J., Kilgard, R., Lacey, C., Prestwich, A., et al. 2006, AJ 132, 310CrossRefGoogle Scholar
Mast, D., Diaz, R., & Aguero, M. 2006, AJ 131, 1394CrossRefGoogle Scholar
Telesco, C. 1988, ARAA 26, 343CrossRefGoogle Scholar
Thatte, N., Tecza, M., & Genzel, R. 2000, A&A 364, 47Google Scholar
Parry, I., et al. 2004, SPIE 5492, 1135Google Scholar
Sakamoto, K., Matsushita, S., Peck, A., Wiedner, M., & Iono, D. 2004, ApJ (Letters) 616, 59CrossRefGoogle Scholar
Springel, V. 2005, MNRAS 364, 1105CrossRefGoogle Scholar