Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T11:18:46.565Z Has data issue: false hasContentIssue false

Search for Stable Magnetohydrodynamic Equilibria in Barotropic Stars.

Published online by Cambridge University Press:  07 August 2014

J. P. Mitchell
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 7820436 Macul, Santiago - Chile email: [email protected] Argelander Institut, University of Bonn, Auf dem Huegel 71, 53121 Bonn - Germany
J. Braithwaite
Affiliation:
Argelander Institut, University of Bonn, Auf dem Huegel 71, 53121 Bonn - Germany
N. Langer
Affiliation:
Argelander Institut, University of Bonn, Auf dem Huegel 71, 53121 Bonn - Germany
A. Reisenegger
Affiliation:
Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860 7820436 Macul, Santiago - Chile email: [email protected]
H. Spruit
Affiliation:
Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is now believed that magnetohydrodynamic equilibria can exist in stably stratified stars due to the seminal works of Braithwaite & Spruit (2004) and Braithwaite & Nordlund (2006). What is still not known is whether magnetohydrodynamic equilibria can exist in a barotropic star, in which stable stratification is not present. It has been conjectured by Reisenegger (2009) that there will likely not exist any magnetohydrodynamical equilibria in barotropic stars. We aim to test this claim by presenting preliminary MHD simulations of barotropic stars using the three dimensional stagger code of Nordlund & Galsgaard (1995).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Akgün, T.et al. 2013, MNRAS, 433, 2445Google Scholar
Armaza, C., Reisenegger, A. & Alejandro Valdivia, J. and Marchant, P. 2013, ArXiv e-prints, arxiv:1305.0592Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819CrossRefGoogle Scholar
Braithwaite, J. & Nordlund, A. 2006, A&A, 450, 1077Google Scholar
Ciolfi, R.et al. 2009, MNRAS, 397, 913Google Scholar
Flowers, E. & Ruderman, M. A. 1977, ApJ, 215, 302Google Scholar
Hoyos, J., Reisenegger, A., & Valdivia, J. A. 2008, A&A, 487, 789Google Scholar
Lander, S. K. & Jones, D. I. 2009, MNRAS, 395, 2162Google Scholar
Markey, P. & Tayler, R. J. 1973, MNRAS, 163, 77CrossRefGoogle Scholar
Reisenegger, A. 2009, A&A, 499, 557Google Scholar
Reisenegger, A. 2013, IAU Proceedings, 302Google Scholar
Tayler, R. J. 1973, MNRAS, 161, 365CrossRefGoogle Scholar
Tomimura, Y. & Eriguchi, Y. 2005, MNRAS, 359, 1117CrossRefGoogle Scholar
Wright, G. A. E. 1973, MNRAS, 162, 339CrossRefGoogle Scholar