Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T23:27:33.296Z Has data issue: false hasContentIssue false

The search for planet and planetesimal transits of white dwarfs with the Zwicky Transient Facility

Published online by Cambridge University Press:  09 October 2020

Keaton J. Bell*
Affiliation:
NSF Astronomy and Astrophysics Postdoctoral Fellow and DiRAC Institute Fellow, Department of Astronomy, University of Washington, Seattle, WA98195, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planetary materials orbiting white dwarf stars reveal the ultimate fate of the planets of the Solar System and all known transiting exoplanets. Observed metal pollution and infrared excesses from debris disks support that planetary systems or their remnants are common around white dwarf stars; however, these planets are difficult to detect since a very high orbital inclination angle is required for a small white dwarf to be transited, and these transits have very short (minute) durations. The low odds of catching individual transits could be overcome by a sufficiently wide and fast photometric survey. I demonstrate that, by obtaining over 100 million images of white dwarf stars with 30-second exposures in its first three years, the Zwicky Transient Facility (ZTF) is likely to record the first exoplanetary transits of white dwarfs, as well as new systems of transiting, disintegrating planetesimals. In these proceedings, I describe my project strategy to discover these systems using the ZTF data.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Agol, E. 2011, ApJL, 731, L31CrossRefGoogle Scholar
Bellm, E. 2014, The Third Hot-wiring the Transient Universe Workshop, 27Google Scholar
Bellm, E. C. 2016, PASP, 128, 084501CrossRefGoogle Scholar
Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2019, PASP, 131, 018002CrossRefGoogle Scholar
Cortés, J. & Kipping, D. 2019, MNRAS, 488, 1695CrossRefGoogle Scholar
Dame, K., Belardi, C., Kilic, M., et al. 2019, MNRAS, 490, 1066CrossRefGoogle Scholar
Faedi, F., West, R. G., Burleigh, M. R., Goad, M. R., & Hebb, L. 2011, MNRAS, 410, 899CrossRefGoogle Scholar
Fulton, B. J., Tonry, J. L., Flewelling, H., et al. 2014, ApJ, 796, 114CrossRefGoogle Scholar
Gänsicke, B. T., Aungwerojwit, A., Marsh, T. R., et al. 2016, ApJL, 818, L7CrossRefGoogle Scholar
Gänsicke, B. T., Koester, D., Farihi, J., et al. 2012, MNRAS, 424, 333CrossRefGoogle Scholar
Gentile Fusillo, N. P., Tremblay, P.-E., Gänsicke, B. T., et al. 2019, MNRAS, 482, 4570CrossRefGoogle Scholar
Hsu, D. C., Ford, E. B., Ragozzine, D., et al. 2019, AJ, 158, 109CrossRefGoogle Scholar
Koester, D., Gänsicke, B. T., & Farihi, J. 2014, A&A, 566, A34Google Scholar
Koester, D. & Wilken, D. 2006, A&A, 453, 1051Google Scholar
Kreidberg, L. 2015, PASP, 127, 1161CrossRefGoogle Scholar
Lund, M. B., Pepper, J. A., Shporer, A., et al. 2018, arXiv e-prints,arXiv:1809.10900Google Scholar
Manser, C. J., Gänsicke, B. T., Eggl, S., et al. 2019, Science, 364, 66CrossRefGoogle Scholar
Rebassa-Mansergas, A., Solano, E., Xu, S., et al. 2019, MNRAS, 489, 3990Google Scholar
Rowan, D. M., Tucker, M. A., Shappee, B. J., et al. 2019, MNRAS, 486, 4574CrossRefGoogle Scholar
Tremblay, P.-E., Ludwig, H.-G., Steffen, M., & Freytag, B. 2013, A&A, 559, A104Google Scholar
Vanderbosch, Z., Hermes, J. J., Dennihy, E., et al. 2019, arXiv e-prints,arXiv:1908.09839Google Scholar
Vanderburg, A., Johnson, J. A., Rappaport, S., et al. 2015, Nature, 526, 546CrossRefGoogle Scholar
van Sluijs, L. & Van Eylen, V. 2018, MNRAS, 474, 4603CrossRefGoogle Scholar
Williams, K. A., Bolte, M., & Koester, D. 2009, ApJ, 693, 355CrossRefGoogle Scholar
Zečević, P., Slater, C. T., Jurić, M., et al. 2019, AJ, 158, 37CrossRefGoogle Scholar