Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T20:18:34.254Z Has data issue: false hasContentIssue false

Rotating Radio Transients and their place among pulsars

Published online by Cambridge University Press:  20 March 2013

S. Burke-Spolaor*
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena CA 91104USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Six years ago, the discovery of Rotating Radio Transients (RRATs) marked what appeared to be a new type of sparsely-emitting pulsar. Since 2006, more than 70 of these objects have been discovered in single-pulse searches of archival and new surveys. With a continual inflow of new information about the RRAT population in the form of new discoveries, multi-frequency follow ups, coherent timing solutions, and pulse rate statistics, a view is beginning to form of the place in the pulsar population RRATs hold. Here we review the properties of neutron stars discovered through single pulse searches. We first seek to clarify the definition of the term RRAT, emphasising that “the RRAT population” encompasses several phenomenologies. A large subset of RRATs appears to represent the tail of an extended distribution of pulsar nulling fractions and activity cycles; these objects present several key open questions remaining in this field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Biggs, J. D. 1992, ApJ, 394, 574Google Scholar
Burke-Spolaor, S. & Bailes, M. 2009, MNRAS, 402, 855Google Scholar
Burke-Spolaor, S., et al. 2011, MNRAS, 416, 2465Google Scholar
Burke-Spolaor, S., et al. 2012, MNRAS, 423, 1351Google Scholar
Cairns, I. H., et al. 2004, MNRAS, 353, 270CrossRefGoogle Scholar
Camilo, F., et al. 2012, ApJ, 746, 63Google Scholar
Cognard, I., et al. 1996, ApJ Letters, 457, 81Google Scholar
Deneva, J. S., et al. 2009, ApJ, 703, 2259Google Scholar
Edwards, R. T., et al. 2001, MNRAS, 326, 358CrossRefGoogle Scholar
Hewish, A., et al. 1968, Nature, 217, 709CrossRefGoogle Scholar
Jacoby, B. A., et al. 2009, ApJ, 699, 2009Google Scholar
Johnston, S. & Romani, R. W. 2002, MNRAS, 332, 109CrossRefGoogle Scholar
Kaplan, D. L., et al. 2009, MNRAS, 400, 1445Google Scholar
Keane, E. F. 2010, proceedings of High Time Resolution Astropysics IV–The Era of Extremely Large Telescopes, id 15Google Scholar
Keane, E. F., et al. 2010, MNRAS, 401, 1057CrossRefGoogle Scholar
Keane, E. F., et al. 2011, MNRAS, 415, 3065Google Scholar
Keane, E. F. & Kramer, M. 2008, MNRAS, 391, 2009Google Scholar
Kramer, M., et al. 2006, Science, 312, 549Google Scholar
Lorimer, D. R., et al. 2006, MNRAS, 372, 777Google Scholar
Lyne, A. G., et al. 2009, MNRAS, 400, 1439Google Scholar
Manchester, R. N., et al. 2001, MNRAS, 400, 1431Google Scholar
Manchester, R. N., et al. 2005, AJ, 129, 1993Google Scholar
McLaughlin, M., et al. 2006, Nature, 439, 817Google Scholar
McLaughlin, M. A., et al. 2009, MNRAS, 400, 1431Google Scholar
McLaughlin, M. A. & Cordes, J. M. 2003, ApJ, 596, 982Google Scholar
Palliyaguru, N. T., et al. 2011, MNRAS, 417, 1871Google Scholar
Weltevrede, P., et al. 2006, ApJ Letters, 645, 149Google Scholar
Rankin, J. M. 1986, ApJ, 301, 901CrossRefGoogle Scholar
Rea, N., et al. 2010, MNRAS, 407, 1887Google Scholar
Reynolds, S. P., et al. 2006, ApJ Letters, 639, 71Google Scholar
Ritchings, R. T. 1976, MNRAS, 176, 249Google Scholar
Shannon, R. M. & Cordes, J. M. 2008, ApJ, 682, 1152Google Scholar
Wang, , Manchester, R. N. & Johnston, S. 2007, MNRAS, 377, 1383Google Scholar