Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T16:18:39.806Z Has data issue: false hasContentIssue false

The Rossiter-McLaughlin effect for exoplanets

Published online by Cambridge University Press:  10 November 2011

Joshua N. Winn*
Affiliation:
Department of Physics, and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are now more than 35 stars with transiting planets for which the stellar obliquity—or more precisely its sky projection—has been measured, via the eponymous effect of Rossiter and McLaughlin. The history of these measurements is intriguing. For 8 years a case was gradually building that the orbits of hot Jupiters are always well-aligned with the rotation of their parent stars. Then in a sudden reversal, many misaligned systems were found, and it now seems that even retrograde systems are not uncommon. I review the measurement technique underlying these discoveries, the patterns that have emerged from the data, and the implications for theories of planet formation and migration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Albrecht, S., et al. 2009, Nature, 461, 373CrossRefGoogle Scholar
Albrecht, S., et al. 2011, ApJ, 726, A68CrossRefGoogle Scholar
Bate, M., Lodato, G., & Pringle, J. E. 2010, MNRAS, 401, 1505CrossRefGoogle Scholar
Casanovas, J. 1997, in: Advances in the Physics of Sunspots, Schmieder, B., del Toro Iniesta, J.C., & Vazquez, M. (eds.), ASP Conf. Ser., 118, 3 (San Francisco: ASP)Google Scholar
Charbonneau, D., et al. 2000, ApJ (Letters), 529, L45CrossRefGoogle Scholar
Chatterjee, S., Ford, E., Matsumura, S., & Rasio, F. 2008, ApJ, 686, 580CrossRefGoogle Scholar
Collier Cameron, A., et al. 2010, MNRAS, 403, 151CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Gaudi, B. & Winn, J. 2007, ApJ, 655, 550CrossRefGoogle Scholar
Hébrard, G., et al. 2010, A&A, 516, 95Google Scholar
Henry, G., et al. 2000, ApJ (Letters), 529, 41CrossRefGoogle Scholar
Hirano, T., et al. 2011, PASJ, 63, 531CrossRefGoogle Scholar
Holt, J. R. 1893, A&A, 12, 646Google Scholar
Lai, D., Foucart, F., & Lin, D. 2011, MNRAS, 412, 2790CrossRefGoogle Scholar
Marzari, F. & Nelson, A. 2009, ApJ, 705, 1575CrossRefGoogle Scholar
Matsumura, S., Peale, S. J., & Rasio, F. 2010, ApJ, 725, 1995CrossRefGoogle Scholar
McLaughlin, D. 1924, ApJ, 60, 22CrossRefGoogle Scholar
Narita, N., et al. 2010, PASJ, 62, L61CrossRefGoogle Scholar
Queloz, D., et al. 2000, A&A, 359, L13Google Scholar
Ragozzine, D. & Holman, M. 2010, ApJ, submitted [arxiv:1006.3727]Google Scholar
Rossiter, R. 1924, ApJ, 60, 15CrossRefGoogle Scholar
Schlaufman, K. 2010, ApJ, 719, 602CrossRefGoogle Scholar
Triaud, A., et al. 2010, A&A, 524, 25Google Scholar
Winn, J., et al. 2006, ApJ (Letters), 653, 69CrossRefGoogle Scholar
Winn, J., et al. 2009a, ApJ, 700, 302CrossRefGoogle Scholar
Winn, J., et al. 2009b, ApJ (Letters), 703, 99CrossRefGoogle Scholar
Winn, J., et al. 2010a, ApJ (Letters), 718, 145CrossRefGoogle Scholar
Winn, J., et al. 2010b, ApJ (Letters), 723, 223CrossRefGoogle Scholar
Winn, J., et al. 2011, AJ, 141, id.63CrossRefGoogle Scholar
Wu, Y. & Murray, N. 2003, ApJ, 589, 605CrossRefGoogle Scholar