Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:34:26.616Z Has data issue: false hasContentIssue false

Role of longitudinal activity complexes for solar and stellar dynamos

Published online by Cambridge University Press:  18 July 2013

Maarit J. Mantere
Affiliation:
Department of Physics, PO Box 64, FI-00014University of Helsinki, Finland Department of Information and Computer Science, Aalto University, PO Box 15400, FI-00076 Aalto, Finland
Petri J. Käpylä
Affiliation:
Department of Physics, PO Box 64, FI-00014University of Helsinki, Finland Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
Jaan Pelt
Affiliation:
Tartu Observatory, Tõravere, 61602, Estonia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we first discuss observational evidence of longitudinal concentrations of magnetic activity in the Sun and rapidly rotating late-type stars with outer convective envelopes. Scenarios arising from the idea of rotationally influenced anisotropic convective turbulence being the key physical process generating these structures are then presented and discussed - such effects include the turbulent dynamo mechanism, negative effective magnetic pressure instability (NEMPI) and hydrodynamical vortex instability. Finally, we discuss non-axisymmetric stellar mean-field dynamo models, the results obtained with them, and compare those with the observational information gathered up so far. We also present results from a pure α2 mean-field dynamo model, which show that time-dependent behavior of the dynamo solutions can occur both in the form of an azimuthal dynamo wave and/or oscillatory behavior related to the alternating energy levels of the active longitudes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Augustson, K. C., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J. 2012, ApJ, 756, 169 CrossRefGoogle Scholar
Bai, T., 1987, ApJ, 314, 795 CrossRefGoogle Scholar
Baryshnikova, Iu & Shukurov, A., 1987, AN, 308, 89 Google Scholar
Berdyugina, S. V., & Tuominen, I. 1998, A&A, 336, L25 Google Scholar
Berdyugina, S. V., & Usoskin, I. G. 2003, A&A, 405, 1121 Google Scholar
Berdyugina, S. V. & Järvinen, S. P., 2005, AN, 326, 283 Google Scholar
Berdyugina, S. V., Berdyugin, A. V., Ilyin, I., & Tuominen, I. 1998, A&A, 340, 437 Google Scholar
Berdyugina, S. V., Berdyugin, A. V., Ilyin, I., & Tuominen, I. 1999, A&A, 350, 626 Google Scholar
Berdyugina, S. V., Pelt, J. & Tuominen, I. 2002, A&A, 394, 505 Google Scholar
Berdyugina, S. V., Moss, D., Sokoloff, D., & Usoskin, I. G. 2006, A&A, 445, 703 Google Scholar
Brandenburg, A. & Subramanian, K. 2005, Phys. Rep., 417, 1 Google Scholar
Brandenburg, A., Kleeorin, N. & Rogachevskii, I. 2010, Astron. Nachr., 331, 5 Google Scholar
Brandenburg, A., Kemel, K., Kleeorin, N., Mitra, Dhrubaditya & Rogachevskii, I. 2011, ApJ, 740, L50 Google Scholar
Brandenburg, A., Kemel, K., Kleeorin, N. & Rogachevskii, I. 2012, ApJ, 749, 179 Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2008, ApJ, 689, 1354 Google Scholar
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J. 2011, ApJ, 731, 69 Google Scholar
Bräuer, H.-J. & Rädler, K.-H., 1987, AN, 308, 101 Google Scholar
Choudhuri, A. R. & Gilman, P. A., 1987, ApJ, 316, 788 Google Scholar
Dikpati, M. & Charbonneau, P., 1999, ApJ, 518, 508 Google Scholar
Elstner, D. & Korhonen, H., 2005, AN, 326, 278 Google Scholar
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K., 2010, ApJL, 715, 133 CrossRefGoogle Scholar
Hackman, T., Mantere, M. J., Jetsu, L., Ilyin, I., Kajatkari, P., Kochukhov, O., Lehtinen, J., Lindborg, M., Piskunov, N., & Tuominen, I., 2011, AN, 332, 859 Google Scholar
Hackman, T., Mantere, M. J., Lindborg, M., Ilyin, I., Kochukhov, O., Piskunov, N., Tuominen, I. 2012, A&A, 538, A126 Google Scholar
Hackman, T., Pelt, J., Mantere, M. J., Jetsu, L., Korhonen, H., Granzer, T., Kajatkari, P., Lehtinen, J., Strassmeier, K. G., 2013, A&A, 553, A40 Google Scholar
Jetsu, L., Pelt, J., & Tuominen, I. 1993, A&A, 278, 449 Google Scholar
Jetsu, L., Pelt, J., & Tuominen, I. 1999, A&A, 351, 212 Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 1999, A&A, 344, 911 Google Scholar
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A., & Mansour, N. N., 2010, ApJ, 719, 307 Google Scholar
Kleeorin, N.I., Rogachevskii, I.V., & Ruzmaikin, A.A. 1990, Sov. Phys. JETP, 70, 878 Google Scholar
Kochukhov, O., Mantere, M. J., Hackman, T., Ilyin, I., 2013, A&A, 550, A84 Google Scholar
Korhonen, H., Berdyugina, S. V., & Tuominen, I., 2004, AN, 325, 402 Google Scholar
Korhonen, H., Berdyugina, S. V., Hackman, T., Ilyin, I. V., Strassmeier, K. G. & Tuominen, I. 2007, A&A, 476, 881 Google Scholar
Küker, M. & Rüdiger, G. 1999, A&A, 346, 922 Google Scholar
Käpylä, P. J., Mantere, M. J., & Hackman, T. 742 2011a ApJ, 34 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 332 2011b Astron. Nachr., 833 Google Scholar
Käpylä, P. J., Brandenburg, A., Kleeorin, N., Mantere, M. J., & Rogachevskii, I. 422 2012a MNRAS, 2465 Google Scholar
Käpylä, P. J., Mantere, M. J., Brandenburg, A., 2012b, ApJL, 755, 22 Google Scholar
Käpylä, P. J., Mantere, M. J., & Brandenburg, A., 2013a, GAFD, 107, 244 Google Scholar
Krause, F., & Rädler, K.-H. 1980 Mean-field magnetohydrodynamics and dynamo theory Pergamon Press, Oxford Google Scholar
Lindborg, M., Korpi, M. J., Hackman, T., Tuominen, I., Ilyin, I., Piskunov, N., 2011, A&A, 526, A44 Google Scholar
Lindborg, M., Olspert, N., Pelt, J., Mantere, M. J., & Strassmeier, K. G., 2013, A&A, to be submittedGoogle Scholar
Mantere, M. J., Käpylä, P. J., & Hackman, T. 2011, Astron. Nachr., 332, 876 Google Scholar
Mitra, D., Tavakol, R., Käpylä, P. J., & Brandenburg, A., 2010, ApJL, 719, 1 Google Scholar
Moss, D., Dale, D. M., Brandenburg, A., & Tuominen, I., 1995, A&A, 294, 155 Google Scholar
Moss, D., 1999, MNRAS, 306, 300 CrossRefGoogle Scholar
Oláh, K., Korhonen, H., Kovári, Zs., Forgács-Dajka, E., & Strassmeier, K. G. 2006, A&A, 452, 303 Google Scholar
Pelt, J., Tuominen, I., & Brooke, J. 2005, A&A, 429, 1093 Google Scholar
Pelt, J., Brooke, J. M., Korpi, M. J., & Tuominen, I. 2006, A&A, 460, 875 Google Scholar
Pelt, J., Korpi, M. J., & Tuominen, I. 2010, A&A, 513, 48 Google Scholar
Pelt, J., Olspert, N., Mantere, M. J., & Tuominen, I. 2011, A&A, 535, 23 Google Scholar
Rempel, M., Schüssler, M., Cameron, R. H., & Knölker, M., 2009, Science, 325, 171 Google Scholar
Rädler, K. H., 1975, MSRSL, 8, 109 Google Scholar
Rogachevskii, I. & Kleeorin, N. 2007, Phys. Rev. E, 76, 056307 Google Scholar
Stein, R. F. & Nordlund, Å, 2012, ApJL, 753, 13 Google Scholar
Tao, L., Weiss, N. O, Brownjohn, D. P., & Proctor, M. R. E., 1998, ApJ, 496, 39 CrossRefGoogle Scholar
Tuominen, I., Berdyugina, S. V., & Korpi, M. J. 2002, AN, 323, 361 Google Scholar
Usoskin, I. G., Berdyugina, S. V., & Poutanen, J. 2005, A&A, 441, 347 Google Scholar