Published online by Cambridge University Press: 06 January 2014
We studied three interplanetary coronal mass ejections associated with solar eruptive filaments. Filament plasma remnants embedded in these structures were identified using plasma, magnetic and compositional signatures. These features when impacted the Earth's terrestrial magnetosphere - ionosphere system, resulted in geomagnetic storms. During the main phase of associated storms, along with high density plasma structures, polarity reversals in the Y-component (dawn-to-dusk) of the interplanetary electric field seem to trigger major auroral substorms with concomitant changes in the polar ionospheric electric field. Here, we examine the cases where plasma dynamics and magnetic structuring in the presence of the prompt penetration of the electric field into the equatorial ionosphere affected the space weather while highlighting the complex geomagnetic storm-substorm relationship.