Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T00:55:31.120Z Has data issue: false hasContentIssue false

Review of Antarctic astronomy

Published online by Cambridge University Press:  30 January 2013

John W. V. Storey*
Affiliation:
School of Physics, University of New South Wales, Sydney, NSW 2052, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Astronomers have always sought the best sites for their telescopes. Antarctica, with its high plateau reaching to above 4,000 metres, intense cold, exceptionally low humidity and stable atmosphere, offers what for many forms of astronomy is the ultimate observing location on this planet. While optical, infrared and millimetre astronomers are building their observatories on the ice, particle physicists are using the ice itself as a detector and exploration of the terahertz region is being conducted from circumpolar long-duration balloons. Remarkable astronomical discoveries are already coming out of Antarctica, and much, much more is just around the corner.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Ahrens, J., Bahcall, J. N., Bai, X., et al. 2004, New Astr., 48, 519CrossRefGoogle Scholar
Aristidi, E., Agabi, A., Fossat, E., Azouit, M., Martin, F., Sadibekova, T., Travouillon, T., Vernin, J., et al. 2005, A&A, 444, 651Google Scholar
Battistelli, E. S., Amico, G., Baù, A., et al. 2012, MNRAS, 423, 1293Google Scholar
Burton, M. G. 2010, A&A Rev., 18, 417Google Scholar
Carlstrom, J. E., Ade, P. A. R., Aird, K. A., et al. 2011, PASP, 123, 568Google Scholar
Crouzet, N., Guillot, T., Agabi, A., Rivet, J., Bondoux, E., et al. 2010, A&A, 511, 36Google Scholar
Crouzet, N., Guillot, T., Agabi, K., Daban, J.-B., Abe, L., Mekarnia, D., Rivet, J.-P., Fante-Caujolle, Y., Fressin, F., Gouvret, C., Schmider, F.-X., Valbousquet, F., Blazit, A., Rauer, H., Erikson, A., Fruth, T., Aigrain, S., Pont, F., & Barbieri, M. 2011, EPJ Web of Conferences, 11, 06001CrossRefGoogle Scholar
Devlin, M. J., Ade, P. A. R., Aretxaga, I., et al. 2009, Nature, 458, 737Google Scholar
Faurobert, M., Arnaud, J., & Vernisse, Y. 2012, EAS Publications Series, 55, 365Google Scholar
Giordano, C., Vernin, J., Chadid, M., Aristidi, E., Agabi, A., & Trinquet, H. 2012, PASP, 124, 494Google Scholar
Hanson, K., ARA Collaboration 2012, Journal of Physics Conference Series, 375, 052037CrossRefGoogle Scholar
Kulesa, C. 2012, private communicationGoogle Scholar
Lascaux, F., Masciadri, E., & Hagelin, S. 2011, MNRAS, 411, 693Google Scholar
Lawrence, J. S., Ashley, M. C. B., Tokovinin, A., & Travouillon, T. 2004, Nature, 431, 278Google Scholar
Okita, H., Ichikawa, T., Yoshikawa, T., Lundock, R. G., & Kurita, K. 2010, Proc. SPIE, 7733Google Scholar
Saunders, W., Lawrence, J. S., Storey, J. W. V., et al. 2009, PASP, 121, 976CrossRefGoogle Scholar
Steinbring, E., Ward, W., & Drummond, J. R. 2012, PASP, 124, 185CrossRefGoogle Scholar
Wang, L., Macri, L. M., Krisciunas, K., et al. 2011, AJ 142, 155CrossRefGoogle Scholar
Yang, H., Allen, G., Ashley, M. C. B., et al. 2009, PASP, 121, 174Google Scholar
Yang, H., Kulesa, C. A., Walker, C. K., Tothill, N. F. H., Yang, J., Ashley, M. C. B., Cue, X., Feng, L., Lawrence, J. S., Luong-Van, D. M., Storey, J. W. V., Wang, L., Zhou, X., & Zhu, Z. 2010, PASP, 122, 490CrossRefGoogle Scholar
Zhou, X., Fan, Z., Jiang, Z., et al. 2010, PASP, 122, 347Google Scholar