Hostname: page-component-599cfd5f84-jr95t Total loading time: 0 Render date: 2025-01-07T08:22:53.224Z Has data issue: false hasContentIssue false

Restricted propagation of an “EIT wave” in the low solar corona

Published online by Cambridge University Press:  09 September 2016

David M. Long
Affiliation:
University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, U.K. email: [email protected]
David Pérez–Suárez
Affiliation:
University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, U.K. email: [email protected]
Gherardo Valori
Affiliation:
University College London, Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, RH5 6NT, U.K. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present observations of an “EIT wave” associated with an X-class flare from 2012 July 6, the propagation of which was severely restricted by the magnetic structure of the solar corona surrounding the erupting active region. The “EIT wave” was observed by both SDO and STEREO-A, allowing a three-dimensional examination of how the propagation of the disturbance was affected both by a neighbouring coronal hole and a trans-equatorial loop system. In addition, the eruption was observed at the limb by the ground-based CoMP instrument, allowing the Doppler motion associated with the eruption and resulting coronal loop oscillation to be investigated in detail. This combination of data-sets provides a unique insight into the three-dimensional evolution of the “EIT wave” and its effects on the surrounding corona.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Attrill, G. D. R., Harra, L. K., van Driel-Gesztelyi, L., & Démoulin, P. 2007, Astrophys. J. Lett., 656, L101 CrossRefGoogle Scholar
Byrne, J. P., Long, D. M., Gallagher, P. T., et al. 2013, Astron. Astrophys., 557, A96 Google Scholar
Chen, P. F., Wu, S. T., Shibata, K., & Fang, C. 2002, Astrophys. J. Lett., 572, L99 Google Scholar
Delaboudinière, J.-P., Artzner, G. E., & Brunaud, J., et al. 1995, Solar Phys., 162, 291 Google Scholar
Delannée, C., Török, T., Aulanier, G., & Hochedez, J.-F. 2008, Solar Phys., 247, 123 Google Scholar
Domingo, V., Fleck, B., & Poland, A. I. 1995, Solar Phys., 162, 1 Google Scholar
Kaiser, M. L., Kucera, T. A., Davilla, J. M., St.Cyr, O. C., Guhathakurta, M., & Christian, E. 2008, Space Sci. Rev., 136, 5 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, Solar Phys., 275, 17 Google Scholar
Long, D. M., Williams, D. R., Régnier, S., & Harra, L. K. 2013, Solar Phys., 288, 567 Google Scholar
Long, D. M., Bloomfield, D. S., Gallagher, P. T., & Pérez-Suárez, D. 2014, Solar Phys., 289, 3279 Google Scholar
Long, D. M., Baker, D., Williams, D. R., et al. 2015, Astrophys. J., 799, 224 CrossRefGoogle Scholar
Nitta, N. V., Schrijver, C. J., Title, A. M., & Liu, W. 2013, Astrophys. J., 776, 58 CrossRefGoogle Scholar
Olmedo, O., Vourlidas, A., Zhang, J., & Cheng, X. 2012, Astrophys. J., 756, 143 Google Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Solar Phys., 275, 3 Google Scholar
Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics, New York: Academic Press, 1959 Google Scholar
Taylor, G. 1950, Royal Society of London Proceedings Series A, 201, 159 Google Scholar
Taylor, G. 1950, Royal Society of London Proceedings Series A, 201, 175 Google Scholar
Thompson, B. J., Plunkett, S. P., Gurman, J. B., et al. 1998, Geophys. Res. Lett., 25, 2465 Google Scholar
Tomczyk, S., Card, G. L., Darnell, T., et al. 2008, Solar Phys., 247, 411 Google Scholar
Vršnak, B. & Cliver, E. W. 2008, Solar Phys., 253, 215 Google Scholar
Wills-Davey, M. J., DeForest, C. E., & Stenflo, J. O. 2007, Astrophys. J., 664, 556 Google Scholar