Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T18:12:14.308Z Has data issue: false hasContentIssue false

Resolving the dusty torus and the mystery surrounding LMC red supergiant WOH G64

Published online by Cambridge University Press:  01 July 2008

Keiichi Ohnaka
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Thomas Driebe
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Karl-Heinz Hofmann
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Gerd Weigelt
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany email: [email protected]
Markus Wittkowski
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present mid-IR long-baseline interferometric observations of the red supergiant WOH G64 in the Large Magellanic Cloud with MIDI at the ESO's Very Large Telescope Interferometer (VLTI). Our MIDI observations of WOH G64 are the first VLTI observations to spatially resolve an individual stellar source in an extragalactic system. Our 2-D radiative transfer modeling reveals the presence of a geometrically and optically thick torus seen nearly pole-on. This model brings WOH G64 in much better agreement with the current evolutionary tracks for a 25 M star — about a half of the previous estimate of 40 M — and solves the serious discrepancy between theory and observation which existed for this object.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Alcock, C., Allsman, R., Alves, D., et al. 2000, ApJ, 542, 281CrossRefGoogle Scholar
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, The IRSA 2MASS All-Sky Catalog of Point Sources, NASA/IPAC Infrared Science ArchiveGoogle Scholar
Elias, J. H., Frogel, J. A., & Schwering, P. B. 1986, ApJ, 302, 675CrossRefGoogle Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Meixner, M., Gordon, K. D., Indebetouw, R., et al. 2006, AJ, 132, 2268CrossRefGoogle Scholar
Ohnaka, K., Driebe, T., Hofmann, K.-H., Weigelt, G., & Wittkowski, M. 2008, A&A, 484, 371Google Scholar
Pojmański, G. 2002, AcA, 52, 397Google Scholar
Pojmański, G. 2003, AcA, 53, 341Google Scholar
Pojmański, G. & Maciejewski, G. 2004, AcA, 54, 153Google Scholar
Pojmański, G. & Maciejewski, G. 2005, AcA, 55, 97Google Scholar
Pojmański, G., Pilecki, B, & Szczygieł, D. 2005, AcA, 55, 275Google Scholar
Schaerer, D., Meynet, G., Maeder, A., & Schaller, G. 1993, A&AS, 98, 523Google Scholar
van Loon, J. Th., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273Google Scholar
Whitelock, P., Feast, M. W., van Loon, J. Th., & Zijlstra, A. A. 2003, MNRAS, 342, 86CrossRefGoogle Scholar
Wood, P. R., Whiteoak, J. B., Hughes, S. M. G., et al. 1992, ApJ, 397, 552CrossRefGoogle Scholar