Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T20:44:41.341Z Has data issue: false hasContentIssue false

The remarkable AGN jets

Published online by Cambridge University Press:  23 June 2017

Serguei Komissarov*
Affiliation:
School of Mathematics, University of Leeds, Leeds LS29JT, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The jets from active galactic nuclei exhibit stability which seems to be far superior compared to that of terrestrial and laboratory jets. They manage to propagate over distances up to a billion of initial jet radii. Yet this may not be an indication of some exotic physics but mainly a reflection of the specific environment these jets propagate through. The key property of this environment is a rapid decline of density and pressure along the jet, which promotes its rapid expansion. Such an expansion can suppress global instabilities, which require communication across the jet, and hence ensure its survival over huge distances. At kpc scales, some AGN jets do show signs of strong instabilities and even turn into plumes. This could be a result of the flattening of the external pressure distribution in their host galaxies or inside the radio lobes. In this regard, we discuss the possible connection between the stability issue and the Fanaroff-Riley classification of extragalactic radio sources. The observations of AGN jets on sub-kpc scale do not seem to support their supposed lack of causal connectivity. When interpreted using simple kinematic models, they reveal a rather perplexing picture with more questions than answers on the jets dynamics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Asada, K., Nakamura, M., Doi, A., Nagai, H., & Inoue, M. 2014, ApJ Letters, 781, 2 Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, Reviews of Modern Physics, 56, 255 Google Scholar
Bicknell, G. V. 1984, ApJ, 286, 68 CrossRefGoogle Scholar
Cavagnolo, K. W., McNamara, B. R., Nulsen, P. E. J., Carilli, C. L., Jones, C., & Brzan, L. 2010, ApJ, 720, 1066 Google Scholar
Clausen-Brown, E., Savolainen, T., Pushkarev, A. B., Kovalev, Y. Y., & Zensus, J. A. 2013, A&A, 558, 144 Google Scholar
Falle, S. A. E. G. 1991, MNRAS, 250, 581 Google Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31 Google Scholar
Hada, K., Kino, M., Doi, A., Nagai, H., Honma, M., Hagiwara, Y., Giroletti, M., Giovannini, G., & Kawaguchi, N. 2013, ApJ, 775, 70 Google Scholar
Homan, D. C., Lister, M. L., Kovalev, Y. Y., Pushkarev, A. B., Savolainen, T., Kellermann, K. I., Richards, J. L., & Ros, E. 2015, ApJ, 798, 134 Google Scholar
Jorstad, S. G., Marscher, A. P., Lister, M. L., et al. 2005, AJ, 130, 1418 Google Scholar
Kaiser, C. R. & Alexander, P. 1997, MNRAS, 286, 215 Google Scholar
Kassim, N., Perley, R. A., Carilli, C. L., Harris, D. E., & Erickson, W. C. 1996, in Cygnus A – Studay of a Radio Galaxy, Proceedings of the Greenbank Workshop, edited by. Carilli, C.L. and Harris, D.E., Cambridge University Press, p. 182 Google Scholar
Kharb, P., Lister, M. L., & Cooper, N. J. 2010, ApJ, 710, 764 Google Scholar
Konigl, A. 1980, PhFl, 23, 1083 Google Scholar
Komissarov, S. S. 1990, Ap&SS, 171, 105 Google Scholar
Komissarov, S. S. & Falle, S. A. E. G. 1996, ASPC, 100, 173 Google Scholar
Komissarov, S. S. & Falle, S. A. E. G. 1998, MNRAS, 297, 1087 Google Scholar
Komissarov, S. S. & Falle, S. A. E. G. 2003, MNRAS, 343, 1045 Google Scholar
Komissarov, S. S., Barkov, M. V., Vlahakis, N., & Königl, A. 2007, MNRAS, 380, 15 Google Scholar
Komissarov, S. S., Vlahakis, N., Königl, A., & Barkov, M. V. 2009, MNRAS, 394, 1182 Google Scholar
Kovalev, Y. Y., Lister, M. L., Homan, D. C., & Kellermann, K. I. 2007, ApJ Letters, 668, 27 Google Scholar
Laing, R. A. & Bridle, A. H. 2002, MNRAS, 336, 1161 Google Scholar
Lister, M. L., Aller, M. F., Aller, H. D., et al. 2013, AJ, 146, 120 Google Scholar
Massaglia, S., Bodo, G., Rossi, P., Capetti, S., & Mignone, A. 2016, arXiv:1609.02497 Google Scholar
Mathews, W. G. & Brighenti, F. 2003, Ann.Rew.A&A, 41, 191 Google Scholar
Meyer, Eileen T., Sparks, W. B., Biretta, J. A., et al. 2013, ApJ Letters, 774, 21 Google Scholar
Moll, R., Spruit, H. C., Obergaulinger, M. 2008, A&A, 492, 621 Google Scholar
Nakamura, M. & Asada, K. 2014, in The Innermost Regions of Relativistic Jets and Their Magnetic Fields, EPJ Web of Conferences, ed. Jos L. Gmez, v61, id.01004Google Scholar
Nulsen, P. E. J., Young Andrew, J. K., Ralph, P., McNamara, B. R., & Wise, M. W. 2015, IAU Symposium Proceedings, 313, 236 Google Scholar
Owen, F. N. & Ledlow, M. J. 1994, ASP Conference Series, 54, 319 Google Scholar
Phinney, E. S. 1983, PhD Thesis, University of Cambridge Google Scholar
Porth, O. & Komissarov, S. S. 2015, MNRAS, 452, 1089 Google Scholar
Pushkarev, A. B., Kovalev, Y. Y., Lister, M. L., & Savolainen, T. 2009, A&A, 507, L33 Google Scholar
de Ruiter, H. R., Parma, P., Fanti, C., & Fanti, R. 1990, A&A, 227, 351 Google Scholar
Schreier, E. J., Gorenstein, P., & Feigelson, E. D. 1982, ApJ, 261, 42 Google Scholar
Tchekhovskoy, A. & Bromberg, O. 2016, MNRAS Letters, 461, 46 Google Scholar
Walker, R. C., Ly, C., Junor, W., & Hardee, P. J. 2008, JPhCS, 131, 012053 Google Scholar