Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T13:14:43.741Z Has data issue: false hasContentIssue false

Reionization and Cosmic Dawn: theory and simulations

Published online by Cambridge University Press:  08 May 2018

Andrei Mesinger*
Affiliation:
Scuola Normale Superiore, Piazza dei Cavalieri, 7 56126 Pisa, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We highlight recent progress in the sophistication and diversification of the simulations of cosmic dawn and reionization. The application of these modeling tools to recent observations has allowed us narrow down the timing of reionization. The midpoint of reionization is constrained to z = 7.6−0.7+0.8 (1 σ), with the strongest constraints coming from the optical depth to the CMB measured with the Planck satellite and the first detection of ongoing reionization from the spectra of the z = 7.1 QSOs ULASJ1120+0641. However, we still know virtually nothing about the astrophysical sources during the first billion years. The revolution in our understanding will be led by upcoming interferometric observations of the cosmic 21-cm signal. The properties of the sources and sinks of UV and X-ray photons are encoded in the 3D patterns of the signal. The development of Bayesian parameter recovery techniques, which tap into the wealth of the 21-cm signal, will soon usher in an era of precision astrophysical cosmology.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Baek, S., Semelin, B., Di Matteo, P., Revaz, Y., & Combes, F. (2010). Reionization by UV or X-ray sources. A&A, 523:A4.Google Scholar
Barkana, R. & Loeb, A. (2008). The difference PDF of 21-cm fluctuations: a powerful statistical tool for probing cosmic reionization. MNRAS, 384:10691079.Google Scholar
Bharadwaj, S. & Pandey, S. K. (2005). Probing non-Gaussian features in the HI distribution at the epoch of re-ionization. MNRAS, 358:968976.CrossRefGoogle Scholar
Bolton, J. S., Haehnelt, M. G., Warren, S. J., Hewett, P. C., Mortlock, D. J., Venemans, B. P., McMahon, R. G., & Simpson, C. (2011). How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? MNRAS, 416:L70L74.Google Scholar
Bond, J. R., Cole, S., Efstathiou, G. & Kaiser, N. (1991). Excursion set mass functions for hierarchical Gaussian fluctuations. ApJ, 379:440460.Google Scholar
Choudhury, T. R., Haehnelt, M. G. & Regan, J. (2009). Inside-out or outside-in: the topology of reionization in the photon-starved regime suggested by Lyα forest data. MNRAS, 394:960977.CrossRefGoogle Scholar
Choudhury, T. R., Puchwein, E., Haehnelt, M. G. & Bolton, J. S. (2015). Lyman α emitters gone missing: evidence for late reionization? MNRAS, 452:261277.Google Scholar
DeBoer, D. R. et al. (2016). Hydrogen Epoch of Reionization Array (HERA). ArXiv e-prints:1606.07473.Google Scholar
Dijkstra, M. (2014). Lyman Alpha Emitting Galaxies as a Probe of Reionization. ArXiv e-prints:1406.7292.Google Scholar
Dixon, K. L., Iliev, I. T., Mellema, G., Ahn, K. & Shapiro, P. R. (2016). The large-scale observational signatures of low-mass galaxies during reionization. MNRAS, 456:30113029.Google Scholar
Dvorkin, C. & Smith, K. M. (2009). Reconstructing patchy reionization from the cosmic microwave background. PRD, 79 (4):043003–+.CrossRefGoogle Scholar
Fan, X. et al. (2006). Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z~6 Quasars. II. A Sample of 19 Quasars. AJ, 132:117136.Google Scholar
Fialkov, A., Barkana, R. & Visbal, E. (2014). The observable signature of late heating of the Universe during cosmic reionization. Nature, 506:197199.Google Scholar
Fialkov, A., Barkana, R., Visbal, E., Tseliakhovich, D. & Hirata, C. M. (2013). The 21-cm signature of the first stars during the Lyman-Werner feedback era. MNRAS, 432:29092916.Google Scholar
Furlanetto, S. R., Hernquist, L. & Zaldarriaga, M. (2004a). Constraining the topology of reionization through Lyα absorption. MNRAS, 354:695707.Google Scholar
Furlanetto, S. R., Oh, S. P. & Briggs, F. H. (2006). Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe. Physics Reports, 433:181301.Google Scholar
Furlanetto, S. R., Zaldarriaga, M. & Hernquist, L. (2004b). The Growth of H II Regions During Reionization. ApJ, 613:115.Google Scholar
Geil, P. M. & Wyithe, J. S. B. (2008). The impact of a percolating IGM on redshifted 21-cm observations of quasar HII regions. MNRAS, 386:16831694.Google Scholar
Giri, S. K., Mellema, G., Dixon, K. L. & Iliev, I. T. (2018). Bubble size statistics during reionization from 21-cm tomography. MNRAS, 473:29492964.CrossRefGoogle Scholar
Gnedin, N. Y. & Abel, T. (2001). Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism. New Astronomy, 6:437455.CrossRefGoogle Scholar
Greig, B. & Mesinger, A. (2015). 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal. MNRAS, 449:42464263.Google Scholar
Greig, B. & Mesinger, A. (2017). The global history of reionization. MNRAS, 465:48384852.CrossRefGoogle Scholar
Iliev, I. T. et al. (2006). Cosmological radiative transfer codes comparison project - I. The static density field tests. MNRAS, 371:10571086.Google Scholar
Iliev, I. T., Mellema, G., Ahn, K., Shapiro, P. R., Mao, Y. & Pen, U.-L. (2014). Simulating cosmic reionization: how large a volume is large enough? MNRAS, 439:725743.Google Scholar
Iliev, I. T., Mellema, G., Shapiro, P. R., Pen, U.-L., Mao, Y., Koda, J. & Ahn, K. (2012). Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources? MNRAS, 423:22222253.Google Scholar
Kakiichi, K., Graziani, L., Ciardi, B., Meiksin, A., Compostella, M., Eide, M. B. & Zaroubi, S. (2017). The concerted impact of galaxies and QSOs on the ionization and thermal state of the intergalactic medium. MNRAS, 468:37183736.Google Scholar
Koopmans, L. et al. (2015). The Cosmic Dawn and Epoch of Reionisation with SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), page 1.Google Scholar
Lacey, C. & Cole, S. (1993). Merger rates in hierarchical models of galaxy formation. MNRAS, 262:627649.Google Scholar
Lewis, A. & Bridle, S. (2002). Cosmological parameters from CMB and other data: A Monte Carlo approach. PRD, 66 (10):103511.CrossRefGoogle Scholar
Lewis, A., Challinor, A. & Lasenby, A. (2000). Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann-Robertson-Walker Models. ApJ, 538:473476.Google Scholar
Majumdar, S., Pritchard, J. R., Mondal, R., Watkinson, C. A., Bharadwaj, S. & Mellema, G. (2017). Quantifying the non-Gaussianity in the EoR 21-cm signal through bispectrum. ArXiv e-prints.Google Scholar
Mason, C. A., Treu, T., Dijkstra, M., Mesinger, A., Trenti, M., Pentericci, L., de Barros, S., & Vanzella, E. (2017). The Universe is Reionizing at z~7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies. ArXiv e-prints:1709.05356.Google Scholar
McQuinn, M., Lidz, A., Zahn, O., Dutta, S., Hernquist, L. & Zaldarriaga, M. (2007). The morphology of HII regions during reionization. MNRAS, 377:10431063.Google Scholar
Mesinger, A. (2010). Was reionization complete by z ~ 5-6? MNRAS, 407:13281337.Google Scholar
Mesinger, A., Aykutalp, A., Vanzella, E., Pentericci, L., Ferrara, A. & Dijkstra, M. (2015). Can the intergalactic medium cause a rapid drop in Lyα emission at z < 6? MNRAS, 446:566577.CrossRefGoogle Scholar
Mesinger, A. & Furlanetto, S. (2007). Efficient Simulations of Early Structure Formation and Reionization. ApJ, 669:663675.CrossRefGoogle Scholar
Mesinger, A., Furlanetto, S. & Cen, R. (2011). 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal. MNRAS, 411:955972.Google Scholar
Mesinger, A., Greig, B. & Sobacchi, E. (2016). The Evolution Of 21 cm Structure (EOS): public, large-scale simulations of Cosmic Dawn and reionization. MNRAS, 459:23422353.Google Scholar
Mesinger, A., McQuinn, M. & Spergel, D. N. (2012). The kinetic Sunyaev-Zel’dovich signal from inhomogeneous reionization: a parameter space study. MNRAS, 422:14031417.Google Scholar
Mitra, S., Choudhury, T. R. & Ferrara, A. (2015). Cosmic reionization after Planck. MNRAS, 454:L76L80.CrossRefGoogle Scholar
Mortonson, M. J. & Hu, W. (2008). Model-Independent Constraints on Reionization from Large-Scale Cosmic Microwave Background Polarization. ApJ, 672:737751.Google Scholar
Mutch, S. J., Geil, P. M., Poole, G. B., Angel, P. W., Duffy, A. R., Mesinger, A. & Wyithe, J. S. B. (2016). Dark-ages reionization and galaxy formation simulation III: Modelling galaxy formation and the Epoch of Reionization. MNRAS, 462:250276.CrossRefGoogle Scholar
Ocvirk, P. et al. (2016). Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe. MNRAS, 463:14621485.Google Scholar
Pacucci, F., Mesinger, A., Mineo, S. & Ferrara, A. (2014). The X-ray spectra of the first galaxies: 21 cm signatures. MNRAS, 443:678686.Google Scholar
Parsons, A. R. et al. (2010). The Precision Array for Probing the Epoch of Re-ionization: Eight Station Results. AJ, 139:14681480.Google Scholar
Partl, A. M., Maselli, A., Ciardi, B., Ferrara, A. & Müller, V. (2011). Enabling parallel computing in CRASH. MNRAS, 414:428444.Google Scholar
Planck Collaboration,. (2016). Planck 2016 intermediate results. XLVII. Planck constraints on reionization history. ArXiv e-prints:1605.03507.Google Scholar
Price, L. C., Trac, H. & Cen, R. (2016). Reconstructing the redshift evolution of escaped ionizing flux from early galaxies with Planck and HST observations. ArXiv e-prints:1605.03970.Google Scholar
Reichardt, C. L. (2016). Observing the Epoch of Reionization with the Cosmic Microwave Background. In Mesinger, A., editor, Astrophysics and Space Science Library, volume 423 of Astrophysics and Space Science Library, page 227.Google Scholar
Santos, M. G., Ferramacho, L., Silva, M. B., Amblard, A. & Cooray, A. (2010). Fast large volume simulations of the 21-cm signal from the reionization and pre-reionization epochs. MNRAS, 406:24212432.CrossRefGoogle Scholar
Seljak, U. & Zaldarriaga, M. (1996). A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies. ApJ, 469:437.Google Scholar
Shimabukuro, H., Yoshiura, S., Takahashi, K., Yokoyama, S. & Ichiki, K. (2016). 21 cm line bispectrum as a method to probe cosmic dawn and epoch of reionization. MNRAS, 458:30033011.Google Scholar
Sobacchi, E. & Mesinger, A. (2014). Inhomogeneous recombinations during cosmic reionization. MNRAS, 440:16621673.Google Scholar
Tingay, S. J. et al. (2013). The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies. PASA, 30:7.Google Scholar
Trac, H. & Cen, R. (2007). Radiative Transfer Simulations of Cosmic Reionization. I. Methodology and Initial Results. ApJ, 671:113.Google Scholar
Trac, H. Y. & Gnedin, N. Y. (2011). Computer Simulations of Cosmic Reionization. Advanced Science Letters, 4:228243.Google Scholar
van Haarlem, M. P. et al. (2013). LOFAR: The LOw-Frequency ARray. A&A, 556:A2.Google Scholar
Watkinson, C. A. & Pritchard, J. R. (2014). Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics. MNRAS, 443:30903106.Google Scholar
Xu, H., Wise, J. H., Norman, M. L., Ahn, K. & O’Shea, B. W. (2016). Galaxy Properties and UV Escape Fractions during the Epoch of Reionization: Results from the Renaissance Simulations. ApJ, 833:84.CrossRefGoogle Scholar
Zahn, O., Lidz, A., McQuinn, M., Dutta, S., Hernquist, L., Zaldarriaga, M. & Furlanetto, S. R. (2007). Simulations and Analytic Calculations of Bubble Growth during Hydrogen Reionization. ApJ, 654:1226.Google Scholar
Zahn, O., Mesinger, A., McQuinn, M., Trac, H., Cen, R. & Hernquist, L. E. (2011). Comparison of reionization models: radiative transfer simulations and approximate, seminumeric models. MNRAS, 414:727738.Google Scholar