Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-02T23:07:13.907Z Has data issue: false hasContentIssue false

Reinforcing a Double Dynamo Model with Solar-Terrestrial Activity in the Past Three Millennia

Published online by Cambridge University Press:  24 July 2018

V. V. Zharkova
Affiliation:
Northumbria University, Faculty of Engineering and Environment, Newcastle upon Tyne, UK email: [email protected]
S. J. Shepherd
Affiliation:
School of Engineering, Bradford University, Bradford, UK email: [email protected]
E. Popova
Affiliation:
Moscow University, Skobeltsyn Institute of Nuclear Physics, Moscow 119991, Russia email: [email protected]
S. I. Zharkov
Affiliation:
Hull University, Department of Physics and Mathematics, Kingston upon Hull, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By applying Principal Components Analysis (PCA) to solar magnetic synoptic maps in cycle 21-23 obtained with Wilcox Solar Observatory we derived analytical expressions for two principal components and their summary curve of solar magnetic field oscillations defined by dipole magnetic sources. In this paper we extrapolate backwards three millennia the summary curve describing solar activity and compare it with the relevant historic data. The extrapolated summary curve shows a remarkable resemblance to the sunspot and terrestrial activity reported in the past millennia: the Maunder Minimum (1645-1715), Wolf minimum (1200), Oort minimum (1010-1050), Homer minimum (800-900 BC), the medieval warm period (900-1200), the Roman warm period (400-10BC). We note that Sporer minimum (1460-1550) derived from the increased abundance of isotope Δ14C is likely produced by a strong increase of galactic cosmic rays caused by a supernova Vela Junior occurred in the Southern hemisphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Karak, B. B. & Nandy, D. 2012, Astrophys. J. Lett., 761, L13Google Scholar
Pesnell, W. D. 2008, Solar Phys., 252, 209Google Scholar
Popova, E., Zharkova, V. & Zharkov, S. 2013, Annales Geophysicae, 31, 2023Google Scholar
Popova, E., Zharkova, V., Shepherd, S. J. & Zharkov, S. 2017, JASTP, https://doi.org/10.1016/j.jastp.2017.05.006Google Scholar
Reischauer, O., Fairbank, J. K. & Craig, A. M. 1960, East Asia: The great Tradition, 64Google Scholar
Schlamminger, L. 1990, MNRAS, 247, 6.7Google Scholar
Shepherd, S. J., Zharkov, S. I. & Zharkova, V. V. 2014, Astrophys. J., 795, 46Google Scholar
Schroder, W. & Treder, H. J. 1999, Geofisica Internecional, 39, 197Google Scholar
Solanki, S. K. & Krivova, N. A. 2011, Science, 334, 916Google Scholar
Usoskin, I. G. 2013, Living Reviews in Solar Physics, 10CrossRefGoogle Scholar
Wittmann, A. 1978, Astron. Astrophys., 66, 93Google Scholar
Wittmann, A. D. & Xu, Z. T. 1987, Astron. Astrophys. Suppl., 70, 83Google Scholar
Zharkova, V. V., Shepherd, S. J. & Zharkov, S. I. 2012, MNRAS, 424, 2943CrossRefGoogle Scholar
Zharkova, V. V., Shepherd, S. J., Popova, E. & Zharkov, S. I. 2015, Nature Scientific Reports, 5, 15689CrossRefGoogle Scholar
Zharkova, V. V., Popova, E., Shepherd, S. J. & Zharkov, S. I. 2017, JASTP, https://doi.org/10.1016/j.jastp.2017.09.019Google Scholar