Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T23:02:04.906Z Has data issue: false hasContentIssue false

Reinforcement of the link between stellar metallicity and the zero age orbit of gas giant planet

Published online by Cambridge University Press:  04 September 2018

Rafael Pinotti
Affiliation:
Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio 43, 20080-090, Rio de Janeiro, Brazil email: [email protected]
Heloisa M. Boechat-Roberty
Affiliation:
Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio 43, 20080-090, Rio de Janeiro, Brazil email: [email protected]
Gustavo F. Porto de Mello
Affiliation:
Observatorio do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antonio 43, 20080-090, Rio de Janeiro, Brazil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 2005 we suggested a relation between the optimal locus of gas giant planet formation, prior to migration, and the metallicity of the host star, based on the core accretion model, and radial profiles of dust surface density and gas temperature. At that time, less than 200 extrasolar planets were known, limiting the scope of our analysis. Here, we take into account the expanded statistics allowed by new discoveries, in order to check the validity of some premises. We compare predictions with the present available data and results for different stellar mass ranges. We find that the zero age planetary orbit (ZAPO) hypothesis continues to hold after a two order of magnitude increase in discovered planets, as well as the prediction that planets around metal poor stars would have shorter orbits.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

D’Angelo, G., Durisen, R. H., & Lissauer, J. J., 2010, in S. Seager, ed., Exoplanets, University of Arizona Press, Tucson, p. 319Google Scholar
Ercolano, B. & Clarke, C. J. 2010 MNRAS, 402, 2735Google Scholar
Fisher, D. A. & Valenti, J. 2005, ApJ, 622, 1102Google Scholar
Gonzalez, G., 1997, MNRAS, 285, 403Google Scholar
Mayor, M. & Queloz, D., 1995, Nature, 378, 355Google Scholar
Mortier, A., Santos, N. C., Sozzetti, A., Mayor, M., Latham, D., Bonfils, X., & Udry, S., 2012, A& A, 543, A45Google Scholar
Morton, T. D. et al., 2016 ApJ, 822, 86Google Scholar
Pinotti, R., Arany-Prado, L., Lyra, W., & Porto de Mello, G. F., 2005, MNRAS, 364, 24Google Scholar
Pinotti, R., Boechat-Roberty, H. M., & Porto de Mello, G. F. 2017, MNRAS, 28, 490Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y., 1996 Icarus, 124, 62Google Scholar
Schlaufman, K. C. & Laughlin, G., 2011 ApJ 738, id. 177Google Scholar
Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., & Zolotukhin, I., 2011, A& A, 532, A79Google Scholar
Sozzetti, A., Torres, G., Latham, D. W., Stefanik, R. P., Korzennik, S. G., Boss, A. P., Carney, B. W., & Laird, J. B., 2009, ApJ, 697, 544Google Scholar
Yasui, C., Kobayashi, N., Tokunaga, A. T., Saito, M., & Tokoku, C., 2010, ApJ, 723, L113Google Scholar