Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T16:53:03.652Z Has data issue: false hasContentIssue false

Red Supergiants as Chemical Abundance Probes: The Local Group dwarf NGC6822

Published online by Cambridge University Press:  30 October 2019

Lee R. Patrick
Affiliation:
Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife, Spain email: [email protected] Universidad de La Laguna, Dpto. Astrofísica, E-38206, La Laguna, Tenerife, Spain
Chris J. Evans
Affiliation:
UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK
Ben Davies
Affiliation:
Astrophysics Research Institute, Liverpool John Moores University, Liverpool Science Park ic2, 146 Brownlow Hill, Liverpool L3 5RF, UK
Rolf-Peter Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA
Maria Bergemann
Affiliation:
Max-Planck Institute for Astronomy, D-69117, Heidelberg, Germany
Annette N. M. Ferguson
Affiliation:
Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Red Supergiant Stars (RSGs) are important probes of stellar and chemical evolution in star-forming environments. They represent the brightest near-IR stellar components of external galaxies and probe the most recent stellar population to provide robust, independent abundance estimates. The Local Group dwarf irregular galaxy, NGC6822, is a reasonably isolated galaxy with an interesting structure and turbulent history. Using RSGs as chemical abundance probes, we estimate metallicities in the central region of NGC6822, finding a suggestion of a metallicity gradient (in broad agreement with nebular tracers), however, this requires further study for confirmation. With intermediate resolution Multi-object spectroscopy (from e.g. KMOS, EMIR, MOSFIRE) combined with state-of-the-art stellar model atmospheres, we demonstrate how RSGs can be used to estimate stellar abundances in external galaxies. In this context, we compare stellar and nebular abundance tracers in NGC 6822 and by combining stellar and nebular tracers we estimate an abundance gradient of −0.18 ± 0.05 dex/kpc.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Asplund, M., Grevesse, N., Sauval, A. J., et al . 2009, Annual Review of Astronomy and Astrophysics, 47, 481 10.1146/annurev.astro.46.060407.145222CrossRefGoogle Scholar
Davies, B., Kudritzki, R.-P., & Figer, D. F. 2010, MNRAS, 407, 1203 10.1111/j.1365-2966.2010.16965.xCrossRefGoogle Scholar
Davies, B., Kudritzki, R.-P., Gazak, Z., et al . 2015, ApJ, 806, 21 10.1088/0004-637X/806/1/21CrossRefGoogle Scholar
Davies, B., Kudritzki, R.-P., Lardo, C., et al . 2017, ApJ, 847, 112 10.3847/1538-4357/aa89edCrossRefGoogle Scholar
Evans, C. J., Davies, B., Kudritzki, R.-P., et al . 2011, A&A, 527, A50 Google Scholar
Gazak, J. Z., Davies, B., Bastian, N., et al . 2014, ApJ, 787, 142 CrossRefGoogle Scholar
Gazak, J. Z., Kudritzki, R., Evans, C., et al . 2015, ApJ, 805, 182 10.1088/0004-637X/805/2/182CrossRefGoogle Scholar
Kudritzki, R. P., Castro, N., Urbaneja, M. A., et al . 2016, ApJ, 829, 70 10.3847/0004-637X/829/2/70CrossRefGoogle Scholar
Lardo, C., Davies, B., Kudritzki, R.-P., et al . 2015, ApJ, 812, 160 10.1088/0004-637X/812/2/160CrossRefGoogle Scholar
Lee, H., Skillman, E. D., & Venn, K. A. 2006, ApJ, 642, 813 10.1086/500568CrossRefGoogle Scholar
Magrini, L., Gonçalves, D. R., & Vajgel, B. 2017, MNRAS, 464, 739 10.1093/mnras/stw2389CrossRefGoogle Scholar
McConnachie, A. W. 2012, AJ, 144, 4 10.1088/0004-6256/144/1/4CrossRefGoogle Scholar
Patrick, L. R., Evans, C. J., Davies, B., et al . 2015, ApJ, 803, 14 10.1088/0004-637X/803/1/14CrossRefGoogle Scholar
Patrick, L. R., Evans, C. J., Davies, B., et al . 2016, MNRAS, 458, 3968 CrossRefGoogle Scholar
Patrick, L. R., Evans, C. J., Davies, B., et al . 2017, MNRAS, 468, 492 CrossRefGoogle Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al . 2004, ApJ, 613, 898 10.1086/423264CrossRefGoogle Scholar
Tabernero, H. M., Dorda, R., Negueruela, I., et al . 2018, MNRAS, 476, 3106 10.1093/mnras/sty399CrossRefGoogle Scholar
Venn, K. A., Lennon, D. J., Kaufer, A., et al . 2001, ApJ, 547, 765 10.1086/318424CrossRefGoogle Scholar