Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T07:40:31.966Z Has data issue: false hasContentIssue false

Rapid rotation and mixing in active OB stars – Physical processes

Published online by Cambridge University Press:  12 July 2011

Jean-Paul Zahn*
Affiliation:
LUTH, Observatoire de Paris, CNRS UMR 8102, Université Paris Diderot 5 place Jules Janssen, 92195 Meudon, France email: Jean-Paul.Zahn@obspm.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the standard description of stellar interiors, O and B stars possess a thoroughly mixed convective core surrounded by a stable radiative envelope in which no mixing occurs. But as is well known, this model disagrees strongly with the spectroscopic diagnostic of these stars, which reveals the presence at their surface of chemical elements that have been synthesized in the core. Hence the radiation zone must be the seat of some mild mixing mechanisms. The most likely to operate there are linked with the rotation: these are the shear instabilites triggered by the differential rotation, and the meridional circulation caused by the changes in the rotation profile accompanying the non-homologous evolution of the star. In addition to these hydrodynamical processes, magnetic stresses may play an important role in active stars, which host a magnetic field. These physical processes will be critically examined, together with some others that have been suggested.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bigot, L., Provost, J., Berthomieu, G., Dziembowski, W. A. et al. 2000, A&A, 356, 218Google Scholar
Braithwaite, J. 2006, A&A, 449, 451Google Scholar
Braithwaite, J. 2009, MNRAS, 397, 763CrossRefGoogle Scholar
Braithwaite, J. & Nordlund, Å. 2006, A&A, 450, 1077Google Scholar
Braithwaite, J. & Spruit, H. C. 2004, Nature, 431, 819CrossRefGoogle Scholar
Brun, A. S., Browning, M. K., & Toomre, J. 2005, ApJ, 629, 461CrossRefGoogle Scholar
Brun, A. S. & Zahn, J.-P. 2006, A&A, 457, 665Google Scholar
Busse, F. H. 1982, ApJ, 259, 759CrossRefGoogle Scholar
Cantiello, M., Langer, N., Brott, I., de Koter, A. et al. 2009, A&A, 499, 279Google Scholar
Chaboyer, B. & Zahn, J.-P. 1992, A&A, 253, 173Google Scholar
Chandrasekhar, S. 1961, Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics (Oxford, Clarendon)Google Scholar
Charbonnel, C. & Talon, S. 2005, Science, 309, 2189CrossRefGoogle Scholar
Cowling, T. G. 1957, Magnetohydrodynamics (Interscience Publishers, Inc., New York)Google Scholar
Duez, V. & Mathis, S. 2010, A&A, 517A, 58Google Scholar
Dudis, J. J. 1974, Journal of Fluid Mechanics, 64, 65CrossRefGoogle Scholar
Eddington, A. S. 1925, Observatory, 48, 73Google Scholar
Ferraro, V. C. A. 1937, MNRAS, 97, 458CrossRefGoogle Scholar
Gough, D. O. & McIntyre, M. E. 1998, Nature, 394, 755CrossRefGoogle Scholar
Hasan, S. S., Zahn, J.-P., & Christensen-Dalsgaard, J. 2005, A&A, 444, L29Google Scholar
Herrero, A., Kudritzki, R. P., Vilchez, J. M., Kunze, D. et al. 1992, A&A, 261, 209Google Scholar
Hunter, I., Brott, I., Lennon, D. J., Langer, N. et al. 2008, ApJ (Letters), 676, 29CrossRefGoogle Scholar
Maeder, A. 2003, A&A, 399, 263Google Scholar
Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2009, Communications in Asteroseismology, 158, 72Google Scholar
Maeder, A. & Meynet, G. 2000, ARAA, 38, 143CrossRefGoogle Scholar
Maeder, A. & Zahn, J.-P. 1998, A&A, 334, 1000Google Scholar
Mathis, S., Palacios, A., & Zahn, J.-P. 2004, A&A, 425, 243Google Scholar
Mathis, S. & Zahn, J.-P. 2004, A&A, 425, 229Google Scholar
Mathis, S. & Zahn, J.-P. 2005, A&A, 440, 653Google Scholar
Mestel, L. 1999, Stellar Magnetism, International series of monographs on physics (Oxford, Clarendon)Google Scholar
Meynet, G. & Maeder, A. 1997, A&A, 321, 465Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Michaud, G. 1970, ApJ, 160, 641CrossRefGoogle Scholar
Richer, J., Michaud, G., & Turcotte, S. 2000, ApJ, 529, 338CrossRefGoogle Scholar
Owocki, S. P. & ud-Doula, A. 2004, ApJ, 600, 1004CrossRefGoogle Scholar
Parker, E. N. 1955, ApJ, 122, 293CrossRefGoogle Scholar
Parker, E. N. 1958, ApJ, 128, 664CrossRefGoogle Scholar
Pinsonneault, M. H., Kawaler, S. D., Sofia, S., & Demarque, P. 1989, ApJ, 338, 424CrossRefGoogle Scholar
Pitts, E. & Tayler, R. J. 1985, MNRAS, 216, 139CrossRefGoogle Scholar
Power, J., Wade, G. A., Aurière, M., Silvester, J. et al. 2008, Contributions of the Astronomical Observatory Skalnate Pleso, 38, 443Google Scholar
Schatzman, E. 1962, Annales d'Astrophysique, 25, 18Google Scholar
Spruit, H. C. 1999, A&A, 349, 189Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Sweet, P. A. 1950, MNRAS, 110, 548CrossRefGoogle Scholar
Talon, S. & Charbonnel, C. 2003, A&A, 405, 1025Google Scholar
Talon, S. & Zahn, J.-P. 1997, A&A, 317, 749Google Scholar
Talon, S., Zahn, J.-P., Maeder, A., & Meynet, G. 1997, A&A, 322, 209Google Scholar
ud-Doula, A. & Owocki, S. P. 2002, ApJ, 576, 413CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D. 2008, MNRAS, 385, 97CrossRefGoogle Scholar
ud-Doula, A., Townsend, R. H. D., & Owocki, S. P. 2006, ApJ (Letters), 640, L191CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Michaud, G. 1978, ApJ, 223, 920CrossRefGoogle Scholar
Vauclair, G., Vauclair, S., & Pamjatnikh, A. 1974, A&A, 31, 63Google Scholar
Vogt, H. 1925, AN, 223, 229Google Scholar
Wade, G. A., Silvester, J., Bale, K., Johnson, N. et al. 2009, in: Berdyugina, S. V., Nagendra, K. N., & Ramelli, R. (eds.), Stellar pulsation: challenges for theory and observation, ASP-CS 405, p. 499Google Scholar
Zahn, J.-P. 1974, in: Ledoux, P., Noels, A., & Rodgers, A. W. (eds.), Stellar Instability and Evolution, IAU Symposium 59, p. 185CrossRefGoogle Scholar
Zahn, J.-P. 1992, A&A 265, 115Google Scholar
Zahn, J.-P., Brun, A. S., & Mathis, S. 2007, A&A, 474, 145Google Scholar