Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T16:18:02.375Z Has data issue: false hasContentIssue false

Rapid planetesimal formation in the inner protoplanetary disk

Published online by Cambridge University Press:  05 January 2015

Joanna Drążkowska
Affiliation:
Heidelberg University, Center for Astronomy, Institute of Theoretical Astrophysics, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: [email protected]
Fredrik Windmark
Affiliation:
Heidelberg University, Center for Astronomy, Institute of Theoretical Astrophysics, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany email: [email protected]
Satoshi Okuzumi
Affiliation:
Tokyo Institute of Technology, Department of Earth and Planetary Sciences, Meguro-ku, Tokyo 152-8551, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Growth barriers, including the bouncing, fragmentation and radial drift problems, are still a big issue in planetesimal and thus planet formation theory. We present a new mechanism for very rapid planetesimal formation by sweep-up growth. Planetesimal formation is extremely fast in the inner protoplanetary disk where the growth rate exceeds the radial drift rate, leading to local planetesimal formation and pile-up inside of 1 AU. This scenario is very appealing particularly in the context of explaining the low mass of Mars, as well as the formation of recently discovered multi-transiting systems with tightly-packed inner planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A, 513, A79Google Scholar
Birnstiel, T., Klahr, H., & Ercolano, B. 2012, A&A, 539, A148Google Scholar
Brauer, F., Henning, T., & Dullemond, C. P. 2008, A&A, 487, L1Google Scholar
Chiang, E. & Laughlin, G. 2013, MNRAS, 431, 3444Google Scholar
Drążkowska, J., Windmark, F., & Dullemond, C. P. 2013, A&A, 556, A37Google Scholar
Drążkowska, J., Windmark, F., & Dullemond, C. P. 2014, A&A, 567, A38Google Scholar
Fang, J. & Margot, J.-L. 2012, ApJ, 761, 92Google Scholar
Garaud, P., Meru, F., Galvagni, M., & Olczak, C. 2013, ApJ, 764, 146CrossRefGoogle Scholar
Hansen, B. M. S. 2009, ApJ, 703, 1131Google Scholar
Izidoro, A., Haghighipour, N., Winter, O. C., & Tsuchida, M. 2014, ApJ, 782, 31CrossRefGoogle Scholar
Johansen, A., Oishi, J. S., Mac Low, M.-M., Klahr, H., Henning, T., & Youdin, A. 2007, Nature, 448, 1022Google Scholar
Laibe, G., Gonzalez, J.-F., & Maddison, S. T. 2012, A&A, 537, A61Google Scholar
Meisner, T., Wurm, G., Teiser, J., & Schywek, M. 2013, A&A, 559, A123Google Scholar
Okuzumi, S., Tanaka, H., Kobayashi, H., & Wada, K. 2012, ApJ, 752, 106Google Scholar
Raymond, S. N. & Cossou, C. 2014, MNRAS, 440, L11Google Scholar
Raymond, S. N., O'Brien, D. P., Morbidelli, A., & Kaib, N. A. 2009, Icarus, 203, 644CrossRefGoogle Scholar
Teiser, J. & Wurm, G. 2009, MNRAS, 393, 1584Google Scholar
Walsh, K. J., Morbidelli, A., Raymond, S. N., O'Brien, D. P., & Mandell, A. M. 2011, Nature, 475, 206Google Scholar
Windmark, F., Birnstiel, T., Güttler, C., Blum, J., Dullemond, C. P., & Henning, T. 2012a, A&A, 540, A73Google Scholar
Windmark, F., Birnstiel, T., Ormel, C. W., & Dullemond, C. P. 2012b, A&A, 544, L16Google Scholar
Windmark, F., & Okuzumi, S., Drążkowska, J. 2014, in prep.Google Scholar
Whipple, F. L. 1972, in: Elvius, A. (ed.), From Plasma to Planet (New York: Wiley Interscience Division), p. 211Google Scholar
Wurm, G., Paraskov, G., & Krauss, O. 2005, Icarus, 178, 253Google Scholar
Youdin, A. N. & Shu, F. H. 2002, ApJ, 580, 494Google Scholar