Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T07:45:50.074Z Has data issue: false hasContentIssue false

Radio spectroscopy of stellar flares: magnetic reconnection & CME shocks in stellar coronae

Published online by Cambridge University Press:  09 September 2016

Jackie Villadsen
Affiliation:
Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA email: [email protected], [email protected], [email protected]
Gregg Hallinan
Affiliation:
Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA email: [email protected], [email protected], [email protected]
Stephen Bourke
Affiliation:
Department of Astronomy, California Institute of Technology, MC 249-17, 1200 E California Blvd, Pasadena, CA 91125, USA email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

High-cadence spectroscopy of solar and stellar coherent radio bursts is a powerful diagnostic tool to study coronal conditions during magnetic reconnection in flares and to detect coronal mass ejections (CMEs). We present results from wide-bandwidth VLA observations of nearby active M dwarfs, including some observations with simultaneous VLBA imaging. We also discuss the Starburst program, which will make wide-bandwidth radio spectroscopic observations of nearby active flare stars for 20+ hours a day for multiple years, coming online in spring 2016 at the Owens Valley Radio Observatory. This program should vastly increase the diversity of observed stellar radio bursts and our understanding of their origins, and offers the potential to detect a population of CME-associated radio bursts.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aschwanden, M. J. & Benz, A. O. 1995, ApJ, 438, 997 CrossRefGoogle Scholar
Bastian, T. S. & Bookbinder, J. A. 1987, Nature, 326, 678 CrossRefGoogle Scholar
Benz, A. O., Conway, J., & Gudel, M. 1998, A&A, 331, 596 Google Scholar
Drake, J. J., Cohen, O., Yashiro, S., & Gopalswamy, N. 2013, ApJ, 764, 170 CrossRefGoogle Scholar
Dressing, C. D. & Charbonneau, D. 2013, ApJ, 767, 95 CrossRefGoogle Scholar
Dulk, G. A. 1985, ARAA, 23, 169 CrossRefGoogle Scholar
Hallinan, G., Antonova, A., Doyle, J. G., Bourke, S., Brisken, W. F., & Golden, A. 2006, ApJ, 653, 690 CrossRefGoogle Scholar
Jones, H. R. A., Pavlenko, Y., Viti, S., Barber, R. J., Yakovina, L. A., Pinfield, D., & Tennyson, J. 2005, MNRAS, 358, 105 CrossRefGoogle Scholar
Khodachenko, M. L., Ribas, I., Lammer, H., Grießmeier, J.-M., Leitner, M., Selsis, F., Eiroa, C., Hanslmeier, A., Biernat, H. K., Farrugia, C. J., & Rucker, H. O. 2007, Astrobiology, 7, 167 CrossRefGoogle Scholar
Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., Grießmeier, J.-M., Terada, N., Erkaev, N. V., Biernat, H. K., Khodachenko, M. L., Ribas, I., Penz, T., & Selsis, F. 2007, Astrobiology, 7, 185 CrossRefGoogle Scholar
Osten, R. A. & Bastian, T. S. 2006, ApJ, 637, 1016 CrossRefGoogle Scholar
Osten, R. A. & Bastian, T. S. 2008, ApJ, 674, 1078 CrossRefGoogle Scholar
Osten, R. A. & Wolk, S. J. 2015, ApJ, 809, 79 CrossRefGoogle Scholar
Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J., & Hawley, S. 2010, Astrobiology, 10, 751 CrossRefGoogle Scholar
West, A. A., Hawley, S. L., Bochanski, J. J., Covey, K. R., Reid, I. N., Dhital, S., Hilton, E. J., & Masuda, M. 2008, AJ, 135, 785 CrossRefGoogle Scholar