Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T01:20:48.909Z Has data issue: false hasContentIssue false

Radio Polarization: A Powerful Resource for Understanding the Blazar Divide

Published online by Cambridge University Press:  11 September 2023

Janhavi Baghel
Affiliation:
National Centre for Radio Astrophysics (NCRA) - Tata Institute of Fundamental Research (TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
P. Kharb
Affiliation:
National Centre for Radio Astrophysics (NCRA) - Tata Institute of Fundamental Research (TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
S. Silpa
Affiliation:
National Centre for Radio Astrophysics (NCRA) - Tata Institute of Fundamental Research (TIFR), S. P. Pune University Campus, Ganeshkhind, Pune 411007, India
Luis C. Ho
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871, China Department of Astronomy, School of Physics, Peking University, Beijing 100871, China
C. M. Harrison
Affiliation:
School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK

Abstract

With high-sensitivity kiloparsec-scale radio polarimetry, we can examine the jet-medium interactions and get a better understanding of the blazar divide in radio-loud (RL) AGN. We are analyzing the radio polarimetric observations with the EVLA and GMRT of 24 quasars and BL Lacs belonging to the Palomar-Green (PG) sample. The RL quasars show extensive polarisation structures in their cores, jets, lobes, and hotspots, whereas preliminary results suggest that BL Lacs exhibit polarisation primarily in their cores and inner jet regions. These findings imply that both intrinsic (central engine-related) and extrinsic (environment-related) variables are important in the formation of the blazar subclasses. The Fanaroff-Riley (FR) dichotomy can also be studied assuming RL unification and looking through the lens of blazars. Due to the radio-unbiased nature of the optically/UV-selected PG sample, we find a large fraction of the PG quasars are restarted, distorted (S- or X-shaped), or have a hybrid FR morphology.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonucci, R.R.J. & Miller, J.S.: 1985, ApJ 297, 621 CrossRefGoogle Scholar
Baghel, J. et al: 2023, MNRAS 519(2), 2773 Google Scholar
Begelman, M.C. et al: 1984, Rev. Mod. Phys. 56(2), 255 CrossRefGoogle Scholar
Bicknell, G.V.: 1994, ApJ 422, 542 CrossRefGoogle Scholar
Blandford, R. et al: 2019, ARA&A 57(1), 467 Google Scholar
Blandford, R.D. & Rees, M.J.: 1974, MNRAS 169, 395 CrossRefGoogle Scholar
Boroson, T.A. & Green, R.F.: 1992, ApJS 80, 109 CrossRefGoogle Scholar
Bridle, A.H.: 1982, in Heeschen, D. S. & Wade, C. M. (eds.), Extragalactic Radio Sources, Vol. 97, pp 121128 Google Scholar
Bridle, A.H. et al: 1994, AJ 108, 766 CrossRefGoogle Scholar
Bridle, A.H. & Perley, R.A.: 1984, ARA&A 22, 319 Google Scholar
Cawthorne, T.V. et al: 1993, ApJ 416, 519 CrossRefGoogle Scholar
Contopoulos, I. et al: 2009, ApJL 702(2), L148 CrossRefGoogle Scholar
Croston, J.H. et al: 2018, MNRAS 476(2), 1614 CrossRefGoogle Scholar
Davis, S.W. & Laor, A.: 2011, ApJ 728(2), 98 CrossRefGoogle Scholar
Falcke, H. et al: 1996, ApJ 471, 106 CrossRefGoogle Scholar
Fanaroff, B.L. & Riley, J.M.: 1974, MNRAS 167, 31P CrossRefGoogle Scholar
Green, R.F. et al: 1986, ApJS 61, 305 CrossRefGoogle Scholar
Hawley, J.F. et al: 2015, Space Sci. Rev. 191(1-4), 441 CrossRefGoogle Scholar
Jurlin, N. et al: 2021, A&A 653, A110 Google Scholar
Kapińska, A.D. et al: 2017, AJ 154(6), 253 CrossRefGoogle Scholar
Kaspi, S. et al: 2000, ApJ 533(2), 631 CrossRefGoogle Scholar
Kellermann, K.I. et al: 1989, AJ 98, 1195 CrossRefGoogle Scholar
Kharb, P. et al: 2008, MNRAS 384(1), 230 CrossRefGoogle Scholar
Kharb, P. et al: 2010, ApJ 710(1), 764 CrossRefGoogle Scholar
Kim, M. et al: 2017, ApJS 232(2), 21 CrossRefGoogle Scholar
Laing, R.A. & Bridle, A.H. : 2002, MNRAS 336(4), 1161 CrossRefGoogle Scholar
Lister, M.L. et al: 2013, AJ 146(5), 120 CrossRefGoogle Scholar
Lister, M.L. & Homan, D.C.: 2005, AJ 130(4), 1389 CrossRefGoogle Scholar
Lyutikov, M. et al: 2005, MNRAS 360(3), 869 CrossRefGoogle Scholar
Meier, D.L. et al: 2001, Science 291(5501), 84 CrossRefGoogle Scholar
Miller, P. et al: 1993, MNRAS 263, 425 CrossRefGoogle Scholar
Mingo, B. et al: 2019, MNRAS 488(2), 2701 CrossRefGoogle Scholar
Pacholczyk, A.G.: 1970, Radio astrophysics,Google Scholar
Rees, M.J.: 1984, ARA&A 22, 471 Google Scholar
Shangguan, J. & Ho, L.C.: 2019, ApJ 873(1), 90 CrossRefGoogle Scholar
Shi, Y. et al: 2014, ApJS 214(2), 23 CrossRefGoogle Scholar
Silpa, S. et al: 2021, MNRAS 507(1), 991 CrossRefGoogle Scholar
Urry, C.M. & Padovani, P.: 1995, PASP 107, 803 CrossRefGoogle Scholar
Willis, A.G. et al: 1981, A&A 95, 250 Google Scholar
Wu, Z.Z. et al: 2009, Res. A&A 9(2), 168 Google Scholar
Xie, Y. et al: 2021, ApJ 910(2), 124 CrossRefGoogle Scholar
Zavala, R.T. & Taylor, G.B.: 2005, ApJL 626(2), L73 CrossRefGoogle Scholar