Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T20:57:25.898Z Has data issue: false hasContentIssue false

Radiative Transfer Modeling of Simulation and Observational Data

Published online by Cambridge University Press:  27 April 2011

Jürgen Steinacker
Affiliation:
Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany email: [email protected], [email protected]
Thomas Henning
Affiliation:
Max-Planck-Institut für Astronomie, Königsstuhl 17, 69117 Heidelberg, Germany email: [email protected], [email protected]
Aurore Bacmann
Affiliation:
Université Joseph Fourier - Grenoble 1/CNRS, Laboratoire d'Astrophysique de Grenoble (LAOG) UMR 5571, BP 53, 38041 Grenoble Cedex 09, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiative Transfer (RT) is considered to be one of the four Grand Challenges in Computational Astrophysics aside of Astrophysical Fluid Dynamics, N-Body Problems in Astrophysics, and Relativistic Astrophysics. The high dimensionality (7D instead of 4D for MHD) and the underlying integro-differential transport equation have forced coders to implement approximative RT methods in order to fit spectra and images or to treat RT in their HD and MHD codes.

The central role of RT in star formation (SF) is based on several facts: a) The dense dusty gas in SF regions alters the radiation substantially making SF one of the most complex applications of RT. b) Radiation transports energy within the object and is therefore an essential part of any dynamical SF model. c) RT calculations tell us which of the processes/structures are visible at what wavelength by which telescope/instrument. Hence, RT is the central tool to analyze simulation results or to explore the scientific capabilities of planned instruments. d) With inverse RT, we can obtain the 1D-3D density and temperature structure from observations, completely decoupled from any (M)HD modeling (and the approximations made within).

In this review, we summarize the main difficulties and the currently used computational techniques to calculate the RT in SF regions. Recent applications of 3D continuum RT in molecular clouds and disks around young massive stars are discussed to illustrate the capabilities and limits of current RT modeling.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bethell, T. J., Chepurnov, A., Lazarian, A., & Kim, J. 2007, ApJ, 663, 1055CrossRefGoogle Scholar
Beuther, H. & Steinacker, J. 2007, ApJL, 656, L85CrossRefGoogle Scholar
Bianchi, S. 2007, A&A, 471, 765Google Scholar
Chini, R., Hoffmeister, V., Kimeswenger, S., Nielbock, M., Nürnberger, D., Schmidtobreick, L., & Sterzik, M. 2004, Nature, 429, 155CrossRefGoogle Scholar
Ercolano, B., Barlow, M. J., & Storey, P. J. 2005, MNRAS, 362, 1038CrossRefGoogle Scholar
Guhathakurta, P. & Draine, B. T. 1989, ApJ, 345, 230CrossRefGoogle Scholar
Jonsson, P. 2006, MNRAS, 372, 2CrossRefGoogle Scholar
Juvela, M. & Padoan, P. 2003, A&A, 397, 201Google Scholar
Juvela, M. 2005, A&A, 440, 531Google Scholar
Mattila, K. 1970, A&A, 9, 53Google Scholar
Min, M., Hovenier, J. W. & de Koter, A. 2003, A&A, 404, 35Google Scholar
Pinte, C., Ménard, F., Duchêne, G. & Bastien, P. 2006, A&A, 459, 797Google Scholar
Siebenmorgen, R., Kruegel, E., & Mathis, J. S. 1992, A&A, 266, 501Google Scholar
Steinacker, J., Thamm, E. & Maier, U. 1996, JQSRT, 97, 56Google Scholar
Steinacker, J., Hackert, R., Steinacker, A., & Bacmann, A. 2002, JQSRT, 73, 557 (a)CrossRefGoogle Scholar
Steinacker, J., Bacmann, A., & Henning, T. 2002, JQSRT, 75, 765 (b)CrossRefGoogle Scholar
Steinacker, J., Henning, T., Bacmann, A., & Semenov, D. 2003, A&A, 401, 405Google Scholar
Steinacker, J., Lang, B., Burkert, A., Bacmann, A., & Henning, T. 2004, ApJL, 615, L157CrossRefGoogle Scholar
Steinacker, J., Bacmann, A., Henning, T., Klessen, R., & Stickel, M. 2005, A&A, 434, 167Google Scholar
Steinacker, J., Bacmann, A., & Henning, T. 2006, ApJ, 645, 920CrossRefGoogle Scholar
Steinacker, J., Chini, R., Nielbock, M., Nürnberger, D., Hoffmeister, V., Huré, J.-M., & Semenov, D. 2006, A&A, 456, 1013Google Scholar
Steinacker, J., Pagani, L., Bacmann, A., & Guieu, S. 2010, A&A, 511, A9Google Scholar
Whitney, B. A., Wood, K., Bjorkman, J. E., & Wolff, M. J. 2003, ApJ, 591, 1049CrossRefGoogle Scholar
Witt, A. N. & Stephens, T. C. 1974, AJ, 79, 948CrossRefGoogle Scholar
Wolf, S. 2003, Computer Physics Communications, 150, 99CrossRefGoogle Scholar
Wood, K., Mathis, J. S., & Ercolano, B. 2004, MNRAS, 348, 1337CrossRefGoogle Scholar