Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T09:15:30.988Z Has data issue: false hasContentIssue false

Radiative, magnetic and numerical feedbacks on small-scale fragmentation

Published online by Cambridge University Press:  27 April 2011

Benoît Commerçon
Affiliation:
Max PLanck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany email: [email protected]
Patrick Hennebelle
Affiliation:
Laboratoire de radioastronomie, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05, France
Edouard Audit
Affiliation:
Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp, F-91191 Gif sur Yvette, France
Gilles Chabrier
Affiliation:
École Normale Supérieure de Lyon, Centre de recherche Astrophysique de Lyon, 46 allée d'Italie, F-69364 Lyon Cedex 07, France
Romain Teyssier
Affiliation:
Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/SAp, F-91191 Gif sur Yvette, France Universität Zürich, Institute für Theoretische Physik, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiative feedback and magnetic field are understood to have a strong impact on the protostellar collapse. We present high resolution numerical calculations of the collapse of a 1 M dense core in solid body rotation, including both radiative transfer and magnetic field. Using typical parameters for low-mass cores, we study thoroughly the effect of radiative transfer and magnetic field on the first core formation and fragmentation. We show that including the two aforementioned physical processes does not correspond to the simple picture of adding them separately. The interplay between the two is extremely strong, via the magnetic braking and the radiation from the accretion shock.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bate, M. R. 2009, MNRAS, 392, 1363CrossRefGoogle Scholar
Commerçon, B., Hennebelle, P., Audit, E. and Chabrier, G., & Teyssier, R. 2008, A&A, 483, 371Google Scholar
Commerçon, B., Hennebelle, P., Audit, E. and Chabrier, G., & Teyssier, R. 2010, A&A, 510, L3Google Scholar
Fromang, S., Hennebelle, P., & Teyssier, R. 2006, A&A, 457, 371Google Scholar
Hennebelle, P. & Teyssier, R. 2008, A&A, 477, 25Google Scholar
Krumholz, M. R., Klein, R. I., & McKee, C. F. 2007, ApJ, 656, 959CrossRefGoogle Scholar
Kuiper, R., Klahr, H., Dullemond, C., Kley, W., & Henning, T. 2010, A&A, 511, A81Google Scholar
Larson, R. B. 1969, MNRAS, 145, 271CrossRefGoogle Scholar
Machida, M. N., Tomisaka, K., Matsumoto, T., & Inutsuka, S.-i. 2008, ApJ, 677, 327CrossRefGoogle Scholar
Minerbo, G. N. 1978, JQSRT, 20, 541CrossRefGoogle Scholar
Miyoshi, T. & Kusano, K. 2005, JCP, 208, 315Google Scholar
Offner, S. S. R., Klein, R. I., McKee, C. F., & Krumholz, M. R. 2009, ApJ, 703, 131CrossRefGoogle Scholar
Price, D. J. & Bate, M. R. 2009, MNRAS, 398, 33CrossRefGoogle Scholar
Semenov, D., Henning, T., Helling, C., Ilgner, M., & Sedlmayr, E. 2003, A&A, 410, 611Google Scholar
Stamatellos, D., Whitworth, A. P., Bisbas, T., & Goodwin, S. 2007, A&A, 475, 37Google Scholar
Teyssier, R. 2002, A&A, 385, 337Google Scholar
Tomida, K., Tomisaka, K., Matsumoto, T., Ohsuga, , et al. 2010, ApJ, 714, L58CrossRefGoogle Scholar
Whitehouse, S. C. & Bate, M. R. 2006, MNRAS, 367, 32CrossRefGoogle Scholar