Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T02:01:35.006Z Has data issue: false hasContentIssue false

Quenched carbonaceous composite (QCC) as a carrier of the extended red emission and blue luminescence in the red rectangle

Published online by Cambridge University Press:  01 February 2008

S. Wada
Affiliation:
Dept. of Applied Physics and Chemistry, Univ. of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan email: [email protected]
Y. Mizutani
Affiliation:
Dept. of Applied Physics and Chemistry, Univ. of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan email: [email protected]
T. Narisawa
Affiliation:
Center for Instrumental Analysis, Univ. of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585, Japan
A. T. Tokunaga
Affiliation:
Institute for Astronomy, Univ. of Hawaii, 2680 Woodlawn Dr., Honolulu, HI 96822 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Filmy-QCC is an organic material synthesized in the laboratory, and it exhibits red photoluminescence (PL). The peak wavelength of the PL ranges from 650 to 690 nm, depending on the mass distribution of polycyclic aromatic hydrocarbon (PAH) molecules, and the emission profile is a good match for that of the extended red emission in the Red Rectangle nebula. The quantum yield of the PL ranges from 0.009 to 0.04. When filmy-QCC is dissolved in cyclohexane, it exhibits blue PL in the wavelength range of 400–500 nm with a quantum yield of 0.12–0.16. The large width of the red PL and the large wavelength difference between the PL of the filmy-QCC as a solid film and in a solution indicate that there is a strong interaction between the components of filmy-QCC. The major components of filmy-QCC are PAHs up to 500 atomic mass units. Our laboratory data suggest that the blue luminescence observed in the Red Rectangle nebula is probably caused by small PAHs in a gaseous state, and the extended red emission is caused by larger PAHs in dust grains.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Chang, H.-C., Chen, K., & Kwok, S. 2006, ApJ (Letter), 639, L63CrossRefGoogle Scholar
Cohen, M., et al. 1975, ApJ, 196, 179CrossRefGoogle Scholar
Cohen, M., Van Winckel, H., Bond, H. E., & Gull, T. R. 2004, AJ, 127, 2362CrossRefGoogle Scholar
Furton, D. G. & Witt, A. N. 1992, ApJ, 386, 587CrossRefGoogle Scholar
d'Hendecourt, L. B., Léger, A., Olofsson, G., & Schmidt, W. 1986, A&A, 170, 91Google Scholar
Goto, M., Maihara, T., Terada, H., Kaito, C., Kimura, S., & Wada, S. 2000, A&AS, 141, 149Google Scholar
Koike, K., Nakagawa, M., Koike, C., Okada, M., & Chihara, H. 2002, A&A, 390, 1133Google Scholar
Ledoux, G., Guillois, O., Huisken, F., Kohn, B., Porterat, D., & Reynaud, C. 2001, A&A, 377, 707Google Scholar
Mattoussi, H., Murata, H., Merritt, C. D., Iizumi, Y., Kido, J., & Kafafi, Z. H. 1999, J. Appl. Phys., 86, 2642CrossRefGoogle Scholar
Rouan, D., Lecoupanec, P., & Léger, A. 1995, in: Jeffery, C. S. (ed.), Proc. 1st Franco- British meeting on the Physics and Chemistry of the Interstellar Medium, Newsletter on Analysis of Astronomical Spectra, no. 22, p. 37Google Scholar
Sakata, A. 1980, in: Andrew, B.H. (ed.), Interstellar Molecules, IAU Symp 87, (Dredrecht: Reidel), p. 325CrossRefGoogle Scholar
Sakata, A., Wada, S., Narisawa, T., Asano, Y., Iijima, Y., Onaka, T., & Tokunaga, A. T. 1992, ApJ (Letter), 393, L83CrossRefGoogle Scholar
Sakata, A., Wada, S., Tokunaga, A. T., Narisawa, T., Nakagawa, H., & Ono, H. 1994, ApJ, 430, 311CrossRefGoogle Scholar
Seahra, S. S. & Duley, W. W. 1999, ApJ, 520, 719CrossRefGoogle Scholar
Sellgren, K. 2001, Spectrochimica Acta, 57, 627CrossRefGoogle Scholar
Smith, T. L. & Witt, A. N. 2002, ApJ, 565, 304CrossRefGoogle Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2004, ApJ (Letter), 606, L65CrossRefGoogle Scholar
Vijh, U. P., Witt, A. N., & Gordon, K. D. 2005, ApJ, 619, 368CrossRefGoogle Scholar
Vijh, U. P., Witt, A. N., York, D. G., Dwarkadas, V. V., Woodgate, B. E., & Palunas, P. 2006, ApJ, 653, 1336CrossRefGoogle Scholar
Wada, S., Kaito, C., Kimura, S., Ono, H., & Tokunaga, A. T. 1999, A&A, 345, 259Google Scholar
Wada, S., & Tokunaga, A. T. 2006, in: Rietmeijer, F. J. M. (ed.), Natural Fulerenes and Related Structures of Elemental Carbon, (Dordrecht: Springer), p. 31CrossRefGoogle Scholar
Waxman, E., & Draine, B. T. 2000, ApJ, 537, 796CrossRefGoogle Scholar
Witt, A. N., & Boroson, T. A. 1990, ApJ, 355, 182CrossRefGoogle Scholar
Witt, A. N., Gordon, K. D., Vijh, U. P., Sell, P. H., Smith, T. L., & Xie, R.-H. 2006, ApJ, 636, 303CrossRefGoogle Scholar
Witt, A. N. & Vijh, U. P. 2004, in: Witt, A. N., Clayton, G. C., & Draine, B. T. (eds.), ASP Conf. Ser. 309, Astrophysics of Dust, (San Francisco: ASP), p. 115Google Scholar