Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T17:24:47.288Z Has data issue: false hasContentIssue false

Pulsation of magnetic stars

Published online by Cambridge University Press:  18 February 2014

Hideyuki Saio*
Affiliation:
Astronomical Institute, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some Ap stars with strong magnetic fields pulsate in high-order p modes; they are called roAp (rapidly oscillating Ap) stars. The p-mode frequencies are modified by the magnetic fields. Although the large frequency separation is hardly affected, small separations are modified considerably. The magnetic field also affects the latitudinal amplitude distribution on the surface. We discuss the properties of axisymmetric p-mode oscillations in roAp stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Balmforth, N. J., Cunha, M. S., Dolez, N., Gough, D. O., & Vauclair, S. 2001, MNRAS, 323, 362CrossRefGoogle Scholar
Balona, L. A., Catanzaro, G., Crause, L., et al. 2013, MNRAS, 432, 2808Google Scholar
Bigot, L. & Dziembowski, W. A. 2002, A&A, 391, 235Google Scholar
Bigot, L. & Kurtz, D. W. 2011, A&A, 536, A73Google Scholar
Bigot, L., Provost, J., Berthomieu, W., Dziembowski, W. A., & Goode, P. R. 2000, A&A, 356, 218Google Scholar
Cunha, M. S. 2002, MNRAS, 333, 47Google Scholar
Cunha, M. S. & Gough, D. 2000, MNRAS, 319, 1020Google Scholar
Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, A&A, 435, 927Google Scholar
Dziembowski, W. A. & Goode, P. R. 1996, ApJ, 458, 338Google Scholar
Gough, D. 2012, Geo. Ast. Fluid Dyn., 106, 429Google Scholar
Hubrig, S., Nesvacil, N., Schöller, M., et al. 2005, A&A, 440, L37Google Scholar
Kochukhov, O. 2004, ApJ, 615, L149CrossRefGoogle Scholar
Kochukhov, O. 2006, A&A, 446, 1051Google Scholar
Kochukhov, O., Drake, N. A., Piskunov, N. & de la Reza, R. 2004, A&A, 424, 935Google Scholar
Kurtz, D. W. 1982, MNRAS, 200, 807Google Scholar
Kurtz, D. W., Cameron, C., Cunha, M. S., et al. 2005, MNRAS, 358, 651Google Scholar
Kurtz, D. W., Elkin, V. G., Cunha, M. S., et al. 2006, MNRAS, 372, 286Google Scholar
Mathys, G., Hubrig, S., Landstreet, J. D., Lanz, T., & Manfroid, J. 1997, A&AS, 123, 353Google Scholar
Roberts, P. H. & Soward, A. M. 1983, MNRAS, 205, 1171Google Scholar
Ryabchikova, T., Kochukhov, O., & Bagnulo, S. 2008, A&A, 480, 811Google Scholar
Saio, H. 2005, MNRAS, 360, 1022Google Scholar
Saio, H. 2008, JPhCS, 118, 12018Google Scholar
Saio, H. & Gautschy, A. 2004a, MNRAS, 350, 485Google Scholar
Saio, H. & Gautschy, A. 2004b, ASP-CS, 310, 478Google Scholar
Saio, H., Ryabchikova, T., & Sachkov, M. 2010, MNRAS, 403, 1729CrossRefGoogle Scholar
Saio, H., Gruberbauer, M., Weiss, W. W., Matthews, J. M., & Ryabchikova, T. 2012, MNRAS, 420, 283CrossRefGoogle Scholar
Shulyak, D., Ryabchikova, T., & Kochukhov, O. 2013, A&A, 551, A14Google Scholar