Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T11:52:11.604Z Has data issue: false hasContentIssue false

Pulsars & Magnetars

Published online by Cambridge University Press:  01 November 2008

Michael Kramer*
Affiliation:
University of Manchester, Jodrell Bank Centre for Astrophysics, Alan-Turin Building, Oxford Road, Manchester M13 9PL, UK email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The largest magnetic field encountered in the observable Universe can be found in neutron stars, in particular in radio pulsars and magnetars. While recent discoveries have slowly started to blur the distinction between these two classes of highly magnetized neutron stars, it is possible that both types of sources are linked via an evolutionary sequence. Indications for this to be the case are obtained from observations of the spin-evolution of pulsars. It is found that most young pulsars are heading across the top of the main distribution of radio pulsars in the P-diagram, suggesting that at least a sub-class of young pulsars may evolve into objects with magnetar-like magnetic field strengths. Part of this evolutionary sequence could be represented by RRATs which appear to share at least in parts properties with both pulsars and magnetars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Breton, R. P. et al. 2008, Science 321, 104CrossRefGoogle Scholar
Camilo, F. & Sarkissian, J. 2008, The Astronomer's Telegram, 1558Google Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., Reynolds, J., Helfand, D. J., Zimmerman, N., & Sarkissian, J. 2006, Nature 442, 892CrossRefGoogle Scholar
Camilo, F., Ransom, S. M., Halpern, J. P., & Reynolds, J. 2007, ApJ 666, L93CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C. 1992, ApJ 392, L9CrossRefGoogle Scholar
Gonzalez, M. E., Kaspi, V. M., Camilo, F., Gaensler, B. M., & Pivovaroff, M. J. 2007, Ap&SS 308, 89Google Scholar
Halpern, J., Gotthelf, E., Reynolds, J., Ransom, S., & Camilo, F. 2008, ApJ 676, 1178CrossRefGoogle Scholar
Kaspi, V. 2007, Ap&SS 308, 1Google Scholar
Keane, E. & Kramer, M. 2008, MNRAS 391, 2009CrossRefGoogle Scholar
Kramer, M., Lyne, A. G., O'Brien, J. T., Jordan, C. A., & Lorimer, D. R. 2006, Science 312, 549CrossRefGoogle Scholar
Kramer, M., Stappers, B. W., Jessner, A., Lyne, A. G., & Jordan, C. A. 2007, MNRAS 377, 107CrossRefGoogle Scholar
Lorimer, D. R. & Kramer, M. 2005, Handbook of Pulsar Astronomy, Cambridge University PressGoogle Scholar
Lyne, A. G. & Smith, F. G. 2005, Pulsar Astronomy, 3rd ed.Cambridge University Press, CambridgeGoogle Scholar
Lyne, A. G., 2004, in Camilo, F., Gaensler, B. M., eds, Young Neutron Stars and Their Environments, IAU Symposium 218, Astronomical Society of the Pacific, San Francisco, p. 257Google Scholar
McLaughlin, M. A. et al. 2003, ApJ 591, L135CrossRefGoogle Scholar
McLaughlin, M. A. et al. 2006, Nature 439, 817CrossRefGoogle Scholar
McLaughlin, M. A. et al. 2007, ApJ 670, 1307CrossRefGoogle Scholar