Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T22:53:04.032Z Has data issue: false hasContentIssue false

Pulsars as excellent probes for the magnetic structure in our Milky Way

Published online by Cambridge University Press:  20 March 2013

JinLin Han*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, DaTun Road 20A, ChaoYang District, Beijing 100012, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this invited talk, I first discuss the advantages and disadvantages of many probes for the magnetic fields of the Milky Way. I conclude that pulsars are the best probes for the magnetic structure in our Galaxy, because magnetic field strength and directions can be derived from their dispersion measures (DMs) and rotation measures (RMs). Using the pulsars as probes, magnetic field structures in the Galactic disk, especially the field reversals between the arms and interarm regions, can be well revealed from the distribution of RM data. The field strengths on large scales and small scales can be derived from RM and DM data. RMs of extragalactic radio sources can be used as the indication of magnetic field directions in the spiral tangential regions, and can be used as probes for the magnetic fields in the regions farther away than pulsars when their median RMs are compared with pulsar RMs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Brown, J. C., Haverkorn, M., Gaensler, B. M., et al. 2007, ApJ, 663, 258CrossRefGoogle Scholar
Cordes, J. M. & Lazio, T. J. W. 2002, preprint (arXiv:astro-ph/0207156)Google Scholar
Green, J. A., McClure-Griffiths, N. M., Caswell, , et al. 2012, MNRAS, 525, 2530Google Scholar
Li, H. B. & Henning, T. J. 2011, Nature, 479, 499Google Scholar
Han, J. L. & Qiao, G. J. 1994, A&A, 288, 759Google Scholar
Han, J. L., Beck, R., Ehle, M., Haynes, R. F., & Wielebinski, R. 1999a, A&A, 348, 405Google Scholar
Han, J. L., Ferriere, K., & Manchester, R. N. 2004, ApJ, 610, 820CrossRefGoogle Scholar
Han, J. L., Manchester, R. N., Berkhuijsen, E. M., & Beck, R. 1997, A&A, 322, 98Google Scholar
Han, J. L., Manchester, R. N., & Qiao, G. J. 1999, MNRAS, 306, 371Google Scholar
Han, J. L., Manchester, R. N., Lyne, A. G., & Qiao, G. J. 2002, ApJ, 570, L17Google Scholar
Han, J. L., Manchester, R. N., Lyne, A. G., Qiao, G. J., & van Straten, W. 2006, ApJ, 642, 868.Google Scholar
Han, J. L. & Zhang, J. S. 2007, A&A, 464, 609Google Scholar
Harvey-Smith, L., Madsen, G. J., & Gaensler, B. M. 2011, ApJ, 736, 83CrossRefGoogle Scholar
Mitra, D., Wielebinski, R., Kramer, M., & Jessner, A. 2003, A&A, 398, 993Google Scholar
Oppermann, N., Junklewitz, H., Robbers, G.et al. 2012, A&A, 542, A93Google Scholar
Taylor, A. R., Stil, J. M. & Sunstrum, C, 2009, ApJ, 702, 1230CrossRefGoogle Scholar
Van Eck, C. L., Brown, J. C., Stil, J. M.et al. 2011, ApJ, 728, 97Google Scholar
Wang, Chen, Han, J. L. & Lai, Dong 2011, MNRAS, 417, 1183CrossRefGoogle Scholar
Xiao, L., Han, J. L., Reich, W., et al. 2011, A&A, 529, A15Google Scholar