Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:43:24.587Z Has data issue: false hasContentIssue false

Pulsars are cool. Seriously.

Published online by Cambridge University Press:  20 March 2013

Scott M. Ransom*
Affiliation:
NRAO, 520 Edgemont Road, Charlottesville, VA 22903, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ever since the first pulsar was discovered by Bell and Hewish over 40 years ago, we've known that not only are pulsars fascinating and truly exotic objects, but that we can use them as powerful tools for basic physics and astrophysics as well. Taylor and Hulse hammered these views home with their discovery and timing of the spectacular “binary pulsar” in the 1970s and 1980s. In the last two decades a host of surprises and a promise of phenomenal scientific riches in the future has come from the millisecond pulsars. As our instrumentation has become more sensitive and better suited to measuring the pulses from these objects, they've given us new tests of general relativity, fantastic probes of the interstellar medium, constraints on the physics of ultra-dense matter, new windows into binary and stellar evolution, and the promise of a direct detection of gravitational waves. These things really are cool, and there is much more we will do with them in the future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, Science, 325, 848Google Scholar
Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Nature, 300, 728Google Scholar
Archibald, A. M., Stairs, I. H., Ransom, S. M., et al. 2009, Science, 324, 1411Google Scholar
Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. 1982, Nature, 300, 615CrossRefGoogle Scholar
Bailes, M., Bates, S. D., Bhalerao, V., et al. 2011, Science, 333, 1717Google Scholar
Champion, D. J., Ransom, S. M., Lazarus, P., et al. 2008, Science, 320, 1309Google Scholar
Crawford, F., Roberts, M. S. E., Hessels, J. W. T., et al. 2006, ApJ, 652, 1499CrossRefGoogle Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081Google Scholar
Demorest, P. B., Ferdman, R. D., Gonzalez, M. E., et al. 2012, ApJ, in press (arXiv:1201.6641)Google Scholar
Detweiler, S. 1979, ApJ, 234, 1100CrossRefGoogle Scholar
Freire, P. C. C., Bassa, C. G., Wex, N., et al. 2011, MNRAS, 412, 2763CrossRefGoogle Scholar
Hellings, R. W. & Downs, G. S. 1983, ApJ, 265, L39CrossRefGoogle Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., & Collins, R. A. 1968, Nature, 217, 709CrossRefGoogle Scholar
Hobbs, G., Archibald, A., Arzoumanian, Z., et al. 2010, Class. & Quant. Grav., 27, 084013Google Scholar
Hulse, R. A. & Taylor, J. H. 1975, ApJ, 195, L51Google Scholar
Lattimer, J. M. & Prakash, M. 2010, (arXiv:1012.3208)Google Scholar
Manchester, R. N., Hobbs, G., Bailes, M., et al. 2012, PASP in press, (arXiv:1210.6130)Google Scholar
Özel, F., Psaltis, D., Ransom, S., Demorest, P., & Alford, M. 2010, ApJ, 724, L199Google Scholar
Radhakrishnan, V., & Srinivasan, G. 1982, Current Science, 51, 1096Google Scholar
Ransom, S. M., Ray, P. S., Camilo, F., et al. 2011, ApJ, 727, L16Google Scholar
Ray, P. S., Abdo, A. A., Parent, D., et al. 2012, (arXiv:1205.3089)Google Scholar
Sesana, A. 2012, Adv. in Astro., 2012, #805402Google Scholar
Shapiro, I. I. 1964, Phys. Rev. Lett., 13, 789Google Scholar
Shapiro, I. I., Ash, M. E., Ingalls, R. P., et al. 1971, Phys. Rev. Lett., 26, 1132CrossRefGoogle Scholar
van Haasteren, R., Levin, Y., Janssen, G. H., et al. 2011, MNRAS, 414, 3117CrossRefGoogle Scholar
Wolszczan, A. & Frail, D. A. 1992, Nature, 355, 145Google Scholar