Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T18:15:39.238Z Has data issue: false hasContentIssue false

Pulsar Emission Physics: The First Fifty Years

Published online by Cambridge University Press:  04 June 2018

Alice K. Harding*
Affiliation:
NASA Goddard Space Flight Center, Astrophysics Science Division, Greenbelt, MD 20771, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Over the last fifty years since the discovery of pulsars, our understanding of where and how pulsars emit the radiation we observe has undergone significant revision. The location and mechanisms of high-energy radiation are intimately tied to the sites of particle acceleration. The evolution of emission models has paralleled the development of increasingly more sensitive telescopes, especially at high energies. I will review the history of pulsar emission modeling, from the early days of gaps at the polar caps, to outer gaps and slot gaps in the outer magnetosphere, to the present era of global magnetosphere simulations that locate most acceleration and high-energy emission in the current sheets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Abdo, A. A. et al. 2013, ApJS, 208, 17.CrossRefGoogle Scholar
Arons, J. & Scharlemann, T. 1979, New Astron. Revs, 46, 513Google Scholar
Baade, W. & Zwicky, F. 1934, Phys. Rev. Lett., 46, 76.Google Scholar
Bai, N. & Spitkovsky, A. 2010, ApJ, 715, 1282.CrossRefGoogle Scholar
Beskin, V., Gurevich, A. V., & Istomin, Ya. N. 1983, JETP, 85, 235.Google Scholar
Beskin, V. 2017, [arXiv:1610.03365]Google Scholar
Bogovalov, S. 1999, A&A, 349, 1017.Google Scholar
Brambilla, G., Kalapotharakos, C., Harding, A. K., & Kazanas, D., 2015, ApJ, 804, 84CrossRefGoogle Scholar
Brambilla, G., Kalapotharakos, C., Timokhin, A., Harding, A. K., & Kazanas, D. 2017, ApJ, submitted, arXiv:1710.03536.Google Scholar
Cerutti, B., Philippov, A., Parfrey, K., & Spitkovsky, A 2014, MNRAS, 448, 606.CrossRefGoogle Scholar
Cerutti, B., Philippov, A., & Spitkovsky, A. 2016, MNRAS, 457, 2401.CrossRefGoogle Scholar
Cerutti, B. & Beloborodov, 2016, Space Sci. Revs, 207, 111.CrossRefGoogle Scholar
Chen, A. & Beloborodov, A. 2014, ApJ, 795, 22.CrossRefGoogle Scholar
Cheng, K. S., Ho, C., & Ruderman, M. A. 1985, ApJ, 300, 500.CrossRefGoogle Scholar
Contopoulos, I. A., Kazanas, D., & Fendt, C. 1999, ApJ, 511, 351.CrossRefGoogle Scholar
Coroniti, F. V. 1990, ApJ, 349, 538.CrossRefGoogle Scholar
Daugherty, J. K. & Harding, A. K. 1982, ApJ, 252, 337.CrossRefGoogle Scholar
Daugherty, J. K. & Harding, A. K. 1996, ApJ, 458, 278.CrossRefGoogle Scholar
Deutsch, A. 1955, Ann. Astrophys., 18, 1.Google Scholar
Dyks, J. & Rudak, B. 2003, ApJ, 598, 1201.CrossRefGoogle Scholar
Erber, T. 1966, Rev. Mod. Phys., 38, 626.CrossRefGoogle Scholar
Ferrara, E. 2017, Proceedings IAU Symposium No. 337, this volume.Google Scholar
Gold, T. 2005, Nature, 218, 731.CrossRefGoogle Scholar
Goldreich, P. & Julian, 1969, ApJ, 157, 869.CrossRefGoogle Scholar
Grenier, I. A., & Harding, A. K., 2015, Comptes Rendus Physique, 159, 14.Google Scholar
Harding, A. K. 1981, ApJ, 245, 267.CrossRefGoogle Scholar
Harding, A. K., Stern, J., Dyks, J., & Frackowiack, M. 2008, ApJ, 680, 1376.CrossRefGoogle Scholar
Harding, A. K. & Muslimov, 2001, ApJ, 556, 987.CrossRefGoogle Scholar
Harding, A. K. & Muslimov, 2002, ApJ, 568, 862.CrossRefGoogle Scholar
Hirotani, K. & Shibata, S. 2001, MNRAS, 325, 1228.CrossRefGoogle Scholar
Kalapotharakos, C., Kazanas, D., Contopoulos, I., & Harding, A. K 2012, ApJ, 749, 2.CrossRefGoogle Scholar
Kalapotharakos, C., Harding, A. K., & Kazanas, D. 2014, ApJ, 793, 97.CrossRefGoogle Scholar
Kalapotharakos, C., Brambilla, G, Harding, A. K., Timokhin, A., & Kazanas, D. 2017, ApJ, submitted, arXiv:1710.03170.Google Scholar
Kalapotharakos, C. & Contopoulos, I. A. 2009, A&A, 496, 495.Google Scholar
Krause-Polsdorff, & Michel, F. C. 1985, ApJ, 144, 72.Google Scholar
Li, J., Spitkovsky, A., & Tchekhovskoy, A. 2012, ApJ, 746, 60.CrossRefGoogle Scholar
Medin, Z. & Lai, D. 2007, MNRAS, 382, 1833.CrossRefGoogle Scholar
Michel, F. C., 1973, Nature, 364, 25Google Scholar
Michel, F. C., 1975, Nature, 364, 25Google Scholar
Morini, M. 1983, MNRAS, 303, 495.CrossRefGoogle Scholar
Muslimov, A. & Harding, A. K. 2003, ApJ, 588, 430.CrossRefGoogle Scholar
Muslimov, A. & Harding, A. K. 2004, ApJ, 606, 1143.CrossRefGoogle Scholar
Muslimov, A., & Tsygan, 1982, MNRAS, 26, 147Google Scholar
Ostriker, J. & Gunn, J. 1969, ApJ, 157, 1395.CrossRefGoogle Scholar
Pacini, F. 1968, Nature, 219, 145.CrossRefGoogle Scholar
Petri, J. 2012, MNRAS, 424, 2023.CrossRefGoogle Scholar
Petri, J., Heyvaerts, S. & Bonazzola, 2002, A&A, 387, 520.Google Scholar
Petri, J. & Kirk, J. 2005, ApJ, 627, L37.CrossRefGoogle Scholar
Philippov, A. & Spitkovsky, A. 2014, ApJ, 785, L33.CrossRefGoogle Scholar
Philippov, A., Spitkovsky, A., & Cerutti, B. 2015, ApJ, 801, L19.CrossRefGoogle Scholar
Ruderman, M. A. & Sutherland, P. 1975, ApJ, 196, 51.CrossRefGoogle Scholar
Romani, R. W. & Yadigaroglu, I. 1995, ApJ, 438, 314.CrossRefGoogle Scholar
Smith, F. G. 1988, MNRAS, 233, 305.CrossRefGoogle Scholar
Spitkovsky, A. 2006, ApJ, 648, L51.CrossRefGoogle Scholar
Sturrock, P. A., 1971, ApJ, 540, L49Google Scholar
Timokhin, A. N. 2006, MNRAS, 368, 1055.CrossRefGoogle Scholar
Timokhin, A. N. 2010, MNRAS, 408, 2092.CrossRefGoogle Scholar
Timokhin, A. N. & Arons, J. 2013, ApJ, 429, 20.Google Scholar
Timokhin, A. N. & Harding, A. K. 2015, ApJ, 810, 144.CrossRefGoogle Scholar
Uzdensky, Spitkovsky A. 2014, ApJ, 780, 3.CrossRefGoogle Scholar
Zhang, B. & Qiao, G. J. 1996, A&A, 310, 135.Google Scholar