Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T11:56:58.976Z Has data issue: false hasContentIssue false

Prospects for Modeling and Forecasting SEP Events with ENLIL and SEPMOD

Published online by Cambridge University Press:  24 July 2018

J. G. Luhmann
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA, USA email: [email protected]
M. L. Mays
Affiliation:
CCMC, NASA Goddard Space Flight Center, Greenbelt, MD, USA
D. Odstrcil
Affiliation:
George Mason University, Fairfax, VA, USA
Yan Li
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA, USA email: [email protected]
H. Bain
Affiliation:
NOAA Space Weather Prediction Center, Boulder, CO, USA
C. O. Lee
Affiliation:
Space Sciences Laboratory, University of California, Berkeley, CA, USA email: [email protected]
C. M. S. Cohen
Affiliation:
California Institute of Technology, Pasadena, CA, USA
R. A. Mewaldt
Affiliation:
California Institute of Technology, Pasadena, CA, USA
R. A. Leske
Affiliation:
California Institute of Technology, Pasadena, CA, USA
Y. Futaana
Affiliation:
IRF, Kiruna, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

One view of major Solar Energetic Particle (SEP) events is that these (proton-dominated) fluxes are accelerated in heliospheric shock sources created by Interplanetary Coronal Mass Ejections (ICMEs), and then travel mainly along interplanetary magnetic field lines connecting the shock(s) to the observer(s). This places a particular emphasis on the role of the heliospheric conditions during the event, requiring a realistic description of the latter to interpret and/or model SEP events. The well-known ENLIL heliospheric simulation with cone model generated ICME shocks is used together with the SEPMOD particle event modeling scheme to demonstrate the value of applying these concepts at multiple inner heliosphere sites.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

C. N. Luhmann, J. G., Odstrcil, D., Schrijver, C. J. & Li, Y. 2004, J. Atmosph. Solar Terr. Phys., 66, 12951309CrossRefGoogle Scholar
Cohen, C. M. S. 2006, Geophys. Monograph Ser., 165, eds. Gopalswamy, N., Mewaldt, R. and Torsti, J., 275-282, AGU, Washington DCGoogle Scholar
Futaana, Y., et al. 2008, Planet. Space Sci., 56, 873880CrossRefGoogle Scholar
Gold, R. E., Krimigis, S. M., Hawkins, S. E., Haggerty, D. K., Lohr, D. A., Fiore, E., Armstrong, T. P., Holland, G. & Lanzerotti, L. J. 1998, Space Sci. Rev., 86, 541562CrossRefGoogle Scholar
Gopalswamy, N., Xie, H., Yashiro, S., Akiyama, S., Makela, P. & Usoskin, I. 2012, Space Sci. Rev., 171, 2360CrossRefGoogle Scholar
Heras, A. M., Sanahuja, B., Smith, Z. K., Detman, T. & Dryer, M. 1992, Astrophys. J., 391, 359369CrossRefGoogle Scholar
Kallenrode, M.-B. & Wibberenz, G. 1997, J. Geophys. Res., 102, 22, 311–11, 334Google Scholar
Lario, D., Sanahua, B. & Heras, A. M. 1997, Adv. Space Res., 20, 121126Google Scholar
Lario, D., Sanahuja, B. & Heras, A. M. 1998, ApJ, 509, 415CrossRefGoogle Scholar
Luhmann, J. G., et al. 2017, Space Weather, 15, 121, doi:10.1002/2017SW001617CrossRefGoogle Scholar
Mays, M. L., et al. 2015, Sol. Phys., 290, 17751814CrossRefGoogle Scholar
Marsh, M. S., Dalla, S., Dierckxsens, M., Laitinen, T. & Crosby, N. B. 2015, Space Weather, 13, 386394CrossRefGoogle Scholar
Mewaldt, R. A., et al. 2008, Space Sci. Rev., 136, 285362CrossRefGoogle Scholar
Odstrcil, D., Pizzo, V. J. & Arge, C. N. 2005, J. Geophys. Res., 110, 2004JA010745CrossRefGoogle Scholar
Taktakishvili, A., Kuznetsova, M., MacNeice, P., Hesse, M., Rastaetter, L., Pulkkinenen, A., Chulaki, A. & Odstrcil, D. 2009, Space Weather, 7, doi:10.1029/2008SW000448CrossRefGoogle Scholar
Von Rosenvinge, T. T., et al. 2008, Space Sci. Rev., 136, 391436CrossRefGoogle Scholar