Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-12T11:55:31.650Z Has data issue: false hasContentIssue false

Properties of Carbon-Oxygen White Dwarf Merger Remnants

Published online by Cambridge University Press:  17 January 2013

Chenchong Zhu*
Affiliation:
Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada, M5S 3H4
Philip Chang
Affiliation:
Department of Physics, University of Wisconsin-Milwaukee, 1900 E Kenwood Blvd., Milwaukee, Wisconsin 53211, USA
Marten van Kerkwijk
Affiliation:
Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada, M5S 3H4
James Wadsley
Affiliation:
Department of Physics & Astronomy, ABB-241, McMaster University, 1280 Main St. W, Hamilton, Ontario, Canada, L8S 4M1
*
Correspondence email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to produce these conditions. We performed a large set of SPH merger simulations, sweeping the possible parameter space. We find trends for merger remnant properties, and discuss how our results affect the viability of our recently proposed sub-Chandrasekhar merger channel for SNe Ia.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Balsara, D. S. 1995, J. Comput. Phys., 121, 357Google Scholar
Di Stefano, R. 2010, ApJ, 712, 728Google Scholar
Di Stefano, R. 2010, ApJ, 719, 474Google Scholar
Fuller, J. & Lai, D. 2011, arxiv:1108.4910Google Scholar
Gilfanov, M. & Bogdán, Á. 2010, Nature, 463, 924Google Scholar
Guerrero, J., García-Berro, E., & Isern, J. 2004, A&A, 413, 257Google Scholar
Guillochon, J., Dan, M., Ramirez-Ruiz, E., & Rosswog, S. 2010, ApJ (Letters), 709, L64Google Scholar
Howell, D. A. 2011, Nat. Commun., 2, 350Google Scholar
Lorén-Aguilar, P., Isern, J., & García-Berro, E. 2009, A&A, 500, 1193Google Scholar
Maoz, D. 2008, MNRAS, 384, 267Google Scholar
Marsh, T. R., Nelemans, G., & Steeghs, D. 2004, MNRAS, 350, 113Google Scholar
Monaghan, J. J. 1992, ARAA, 30, 543Google Scholar
Pakmor, R., Hachinger, S., Röpke, F. K., & Hillebrandt, W. 2011, A&A, 528, A117Google Scholar
Pakmor, R., Kromer, M., Röpke, F. K., Sim, S. A., Ruiter, A. J., & Hillebrandt, W. 2010, Nature, 463, 61CrossRefGoogle Scholar
Ruiter, A. J., Belczynski, K., & Fryer, C. 2009, ApJ, 699, 2026Google Scholar
Shen, K. J., Bildsten, L., Kasen, D., & Quataert, E. 2011, arxiv:1108.4036Google Scholar
Sim, S. A., Röpke, F. K., Hillebrandt, W., Kromer, M., Pakmor, R., Fink, M., Ruiter, A. J., & Seitenzahl, I. R. 2010, ApJ (Letters), 714, L52Google Scholar
Timmes, F. 2010, Helmholtz Stellar Equation of State, available at http://cococubed.asu.edu/Google Scholar
Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501Google Scholar
Van Kerkwijk, M. H., Chang, P., & Justham, S. 2010, ApJ (Letters), 722, L157CrossRefGoogle Scholar
Wadsley, J. W., Stadel, J., & Quinn, T. 2004, New Astron., 9, 137Google Scholar
Woosley, S. E. & Kasen, D. 2011, ApJ, 734, 38Google Scholar