Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T05:26:44.568Z Has data issue: false hasContentIssue false

Progenitors of Magnetars and Hyperaccreting Magnetized Disks

Published online by Cambridge University Press:  21 February 2013

Y. Xie
Affiliation:
National Astronomical Observatories, Chinese Academy Of Sciences, Beijing, 100012, P. R. China email: [email protected]
S. N. Zhang
Affiliation:
National Astronomical Observatories, Chinese Academy Of Sciences, Beijing, 100012, P. R. China email: [email protected] Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100012, P. R. China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose that a magnetar could be formed during the core collapse of massive stars or coalescence of two normal neutron stars, through collecting and inheriting the magnetic fields magnified by hyperaccreting disk. After the magnetar is born, its dipole magnetic fields in turn have a major influence on the following accretion. The decay of its toroidal field can fuel the persistent X-ray luminosity of either an SGR or AXP; however the decay of only the poloidal field is insufficient to do so.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Balbus, S. A. & Hawley, J. F. 1991, ApJ, 376, 214CrossRefGoogle Scholar
Blandford, R. D. 1976, MNRAS, 176, 456Google Scholar
Blandford, R. D., & Payne, D. G. 1982 1982, MNRAS, 199, 883CrossRefGoogle Scholar
Di Matteo, T., Perna, R., & Narayan, R. 2002, ApJ, 579, 706CrossRefGoogle Scholar
Duncan, R. C. & Thompson, C. 1992, ApJ, 392, L9CrossRefGoogle Scholar
Ferrario, L. & Wickramasinghe, D. 2006, MNRAS, 367, 1323CrossRefGoogle Scholar
Ghosh, P. & Abramowicz, M. A. 1997, MNRAS, 292, 887CrossRefGoogle Scholar
Giacomazzo, B., Rezzolla, L., & Baiotti, L. 2009, MNRAS, 399, L164Google Scholar
Goldreich, P. & Reisenegger, A. 1992, ApJ, 395, 250CrossRefGoogle Scholar
Heyl, J. S. & Kulkarni, S. R. 1998, ApJ, 506, L61CrossRefGoogle Scholar
Lin, J. R. & Zhang, S. N. 2004, ApJ, 615, L133CrossRefGoogle Scholar
LoveLace, R. V. E., Romanova, M. M., & Bisnovatyi-Kogan, G. S. 1995, MNRAS, 275, 244CrossRefGoogle Scholar
Paczynski, B. 1992, Acta Astron., 42, 145Google Scholar
Price, R. H. & Rosswog, S. 2006, Science, 312, 719Google Scholar
Romanova, M. M. 1998, ApJ, 500, 703Google Scholar
Ruderman, M. 1972, ARAA, 10, 427Google Scholar
Spruit, H. C. & Uzdensky, D. A. 2005, ApJ, 629, 960CrossRefGoogle Scholar
Xie, Y., Huang, Z. Y., Jia, X. F., Fan, S. J., & Liu, F. F. 2009, MNRAS, 398, 583CrossRefGoogle Scholar