Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T19:15:00.089Z Has data issue: false hasContentIssue false

Probing the Sun’s Near Surface Shear Layer using HMI Spherical Harmonic Coefficients

Published online by Cambridge University Press:  23 December 2024

S. C. Tripathy*
Affiliation:
National Solar Observatory, 3665 Discovery Dr., Boulder, CO 80303, USA
K. Jain
Affiliation:
National Solar Observatory, 3665 Discovery Dr., Boulder, CO 80303, USA
S. Kholikov
Affiliation:
National Solar Observatory, 3665 Discovery Dr., Boulder, CO 80303, USA Institute of Fundamental and Applied Research, National Research University, TIIAME, Uzbekistan
R. Komm
Affiliation:
National Solar Observatory, 3665 Discovery Dr., Boulder, CO 80303, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have measured zonal and meridional components of subsurface flows up to a depth of 30 Mm below the solar surface by applying the technique of ring diagram on Dopplergrams which are constructed from the spherical harmonic (SH) coefficients. The SH coefficients are obtained from the Helioseismic and Magnetic Imager (HMI) full-disk Dopplergrams. We find a good agreement and some differences between the flows obtained in this study with those from the traditional methods using direct Dopplergrams.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Anderson, E.R., Duvall, T.L., and Jefferies, S.M. : 1990, ApJ, 364, 699 CrossRefGoogle Scholar
Basu, S., & Antia, H. M. 2010, ApJ, 717, 488 CrossRefGoogle Scholar
Brandenburg, A. : 2013, Solar and Astrophysical Dynamos and Magnetic Activity 294, 387 Google Scholar
Corbard, T., Toner, C., Hill, F., et al. 2003, in ESA Special Publication, Vol. 517, GONG+ 2002. Local and Global Helioseismology: the Present and Future, ed. Sawaya–Lacoste, H., 255 Google Scholar
Duvall, T. L., J., Jefferies, S. M., Harvey, J. W., & Pomerantz, M. A. 1993, Nature, 362, 430 CrossRefGoogle Scholar
González Hernández, I., Komm, R., Hill, F., Howe, R., Corbard, T., and Haber, D.A. : 2006, ApJ 638, 576 CrossRefGoogle Scholar
Haber, D. A., Hindman, B. W., Toomre, J., et al. 2002, ApJ, 570, 855 CrossRefGoogle Scholar
Hill, F. 1988, ApJ, 333, 996 CrossRefGoogle Scholar
Howe, R., Hill, F., Komm, R., Chaplin, W. J., Elsworth, Y., Davies, G. R., and, …: 2018, ApJ, 862, L5 CrossRefGoogle Scholar
Jain, K., Tripathy, S. C., & Hill, F. 2017, ApJ, 849, 94 CrossRefGoogle Scholar
Kholikov, S., Serebryanskiy, A., & Jackiewicz, J. 2014, ApJ, 784, 145 CrossRefGoogle Scholar
Komm, R. : 2021, Solar Physics 296, 174 CrossRefGoogle Scholar
Komm, R. : 2022, Solar Physics, 297, 99 CrossRefGoogle Scholar
Komm, R., Howe, R., González Hernández, I., & Hill, F. 2015, Solar Physics, 290, 1081 CrossRefGoogle Scholar
Komm, R., Howe, R., & Hill, F. 2018, Solar Physics, 293, 145 CrossRefGoogle Scholar
Larson, T. P., & Schou, J. 2018, Solar Physics, 293, 29 CrossRefGoogle Scholar
Libbrecht, K.G. and Morrow, C.A. : 1991, Solar Interior and Atmosphere, 479 Google Scholar
Lin, C.-H., & Chou, D.-Y. 2018, ApJ, 860, 48 CrossRefGoogle Scholar
Zhao, J., & Kosovichev, A. G. 2004, ApJ, 603, 776 CrossRefGoogle Scholar
Zhao, J., & Kosovichev, A. G. 2014, ApJ, 789, L7 CrossRefGoogle Scholar