Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T22:18:21.280Z Has data issue: false hasContentIssue false

Probing the properties of the Milky Way's central supermassive black hole with stellar orbits

Published online by Cambridge University Press:  01 October 2007

A. M. Ghez
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
S. Salim
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] NOAO, 950 N Cherry Ave, Tucson, AZ 85719USA email: [email protected]
N. Weinberg
Affiliation:
California Institute of Technology, Pasadena, CA 91125USA email: [email protected] University of California Berkeley, Department of Astronomy Berkeley, CA 94720-3411USA email: [email protected]
J. Lu
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
T. Do
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
J. K. Dunn
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
K. Matthews
Affiliation:
NOAO, 950 N Cherry Ave, Tucson, AZ 85719USA email: [email protected]
M. Morris
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
S. Yelda
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
E. E. Becklin
Affiliation:
UCLA Department of Physics and Astronomy Los Angeles, CA 90095-1547USA email: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We report new precision measurements of the properties of our Galaxy's supermassive black hole. Based on astrometric (1995-2007) and radial velocity (2000-2007) measurements from the W. M. Keck 10 meter telescopes, the Keplerian orbital parameters for the short period star S0-2 imply a distance of 8.3 ± 0.3 kpc, an enclosed mass of 4.8 ± 0.3 × 106M, and a black hole position that is localized to within ± 1 mas and that is consistent with the position of SgrA*-IR. Astrometric bias from source confusion is identified as a significant source of systematic error and is accounted for in this study. Our black hole mass and distance are significantly higher than previous estimates. The higher mass estimate brings the Galaxy into better agreement with the relationship between the mass of the central black hole and the velocity dispersion of the host galaxy's bulge observed for nearby galaxies. It also raises the orbital period of the innermost stable orbit of a non-spinning black hole to 38 min and increases the Rauch-Tremaine resonant relaxation timescales for stars in the vicinity of the central black hole. Taking the black hole's distance as a measure of R0, which is a fundamental scale for our Galaxy, and other measurements of galactic constants, we infer a value of the Galaxy's local rotation speed (θ0) of 255 ± 13 km s−1. With the precisions of the astrometric and radial velocity measurements that are now possible with Laser Guide Star Adaptive Optics, we expect to be able to measure Ro to an accuracy of ~ 1% within the next ten years, which could considerably reduce the uncertainty in the cosmological distance ladder.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bélanger, G., Terrier, R., de Jager, O. C., Goldwurm, A., & Melia, F. 2006, Journal of Physics Conference Series, 54, 420CrossRefGoogle Scholar
Chakrabarty, D. & Saha, P. 2001, AJ, 122, 232CrossRefGoogle Scholar
Cox, A. N. 2000, Allen's astrophysical quantities, 4th ed. Publisher: New York: AIP Press; Springer, 2000. Editedy by Cox, Arthur N.. ISBN: 0387987460.Google Scholar
Eckart, A. & Genzel, R. 1997, MNRAS, 284, 576CrossRefGoogle Scholar
Eckart, A., Genzel, R., Ott, T., & Schödel, R. 2002, MNRAS, 331, 917CrossRefGoogle Scholar
Eckart, A., Schödel, R., Meyer, L., Trippe, S., Ott, T., & Genzel, R. 2006, A&A, 455, 1Google Scholar
Eisenhauer, F. et al. 2003, ApJ, 597, L121CrossRefGoogle Scholar
Eisenhauer, F., et al. 2005, ApJ, 628, 246CrossRefGoogle Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9CrossRefGoogle Scholar
Figer, D. F., et al. 2003, ApJ, 599, 1139CrossRefGoogle Scholar
Fragile, P. C. & Mathews, G. J. 2000, ApJ, 542, 328CrossRefGoogle Scholar
Freitag, M., Amaro-Seoane, P., & Kalogera, V. 2006, ApJ, 649, 91CrossRefGoogle Scholar
Gebhardt, K., et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Genzel, R., Eckart, A., Ott, T., & Eisenhauer, F. 1997, MNRAS, 291, 219CrossRefGoogle Scholar
Genzel, R., Schödel, R., Ott, T., Eckart, A., Alexander, T., Lacombe, F., Rouan, D., & Aschenbach, B. 2003a, Nature, 425, 934CrossRefGoogle Scholar
Genzel, R., et al. 2003b, ApJ, 594, 812CrossRefGoogle Scholar
Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T. 2000, MNRAS, 317, 348CrossRefGoogle Scholar
Ghez, A. M. et al. 2003, ApJ, 586, L127CrossRefGoogle Scholar
Ghez, A. M. et al. 2008, ApJ, to be submittedGoogle Scholar
Ghez, A. M., et al. 2005b, ApJ, 635, 1087CrossRefGoogle Scholar
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. 1998, ApJ, 509, 678CrossRefGoogle Scholar
Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A., & Kremenek, T. 2000, Nature, 407, 349CrossRefGoogle Scholar
Ghez, A. M. et al. 2005a, ApJ, 620, 744CrossRefGoogle Scholar
Ghez, A. M., et al. 2004, ApJ, 601, L159CrossRefGoogle Scholar
Haller, J. W., & Melia, F. 1996, ApJ, 464, 774CrossRefGoogle Scholar
Hopman, C., & Alexander, T. 2006, ApJ, 645, 1152CrossRefGoogle Scholar
Hornstein, S. D., Matthews, K., Ghez, A. M., Lu, J. R., Morris, M., Becklin, E. E., Rafelski, M., & Baganoff, F. K. 2007, ApJ, 667, 900CrossRefGoogle Scholar
Jaroszynski, M. 1998, Acta Astronomica, 48, 653Google Scholar
Jaroszyński, M. 1999, ApJ, 521, 591CrossRefGoogle Scholar
Kerr, F. J., & Lynden-Bell, D. 1986, MNRAS, 221, 1023CrossRefGoogle Scholar
Levin, Y., & Beloborodov, A. M. 2003, ApJ, 590, L33CrossRefGoogle Scholar
Lu, J. R., Ghez, A. M., Hornstein, S. D., Morris, M., Matthews, K., Thompson, D. J., & Becklin, E. E. 2006, Journal of Physics Conference Series, 54, 279CrossRefGoogle Scholar
Majewski, S. R., Law, D. R., Polak, A. A., & Patterson, R. J. 2006, ApJ, 637, L25CrossRefGoogle Scholar
Méndez, R. A., Platais, I., Girard, T. M., Kozhurina-Platais, V., & van Altena, W. F. 1999, ApJ, 524, L39CrossRefGoogle Scholar
Miralda-Escudé, J. & Gould, A. 2000, ApJ, 545, 847CrossRefGoogle Scholar
Morris, M. 1993, ApJ, 408, 496CrossRefGoogle Scholar
Olling, R. P. & Merrifield, M. R. 2000, MNRAS, 311, 361CrossRefGoogle Scholar
Olling, R. P. & Merrifield, M. R. 2001, MNRAS, 326, 164CrossRefGoogle Scholar
Rauch, K. P. & Tremaine, S. 1996, New Astronomy, 1, 149CrossRefGoogle Scholar
Reid, M. J. 1993, ARAA, 31, 345CrossRefGoogle Scholar
Reid, M. J. & Brunthaler, A. 2004, ApJ, 616, 872CrossRefGoogle Scholar
Rubilar, G. F. & Eckart, A. 2001, A&A, 374, 95Google Scholar
Salim, S. & Gould, A. 1999, ApJ, 523, 633CrossRefGoogle Scholar
Schödel, R. et al. 2002, Nature, 419, 694CrossRefGoogle Scholar
Schödel, R. et al. 2003, ApJ, 596, 1015CrossRefGoogle Scholar
Tagger, M. & Melia, F. 2006, ApJ, 636, L33CrossRefGoogle Scholar
Tremaine, S., et al. 2002, ApJ, 574, 740CrossRefGoogle Scholar
Weinberg, S. 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New York: Wiley)Google Scholar
Weinberg, N. N., Milosavljević, M., & Ghez, A. M. 2005, ApJ, 622, 878CrossRefGoogle Scholar
Taylor, J. H. & Weisberg, J. M. 1989, ApJ, 345, 434CrossRefGoogle Scholar
Zucker, S. & Alexander, T. 2007, ApJ, 654, L83CrossRefGoogle Scholar