Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T20:28:54.108Z Has data issue: false hasContentIssue false

Probing the effects of hadronic acceleration at the SN 1006 shock front

Published online by Cambridge University Press:  29 January 2014

Marco Miceli
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy email: [email protected]
F. Bocchino
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy email: [email protected]
A. Decourchelle
Affiliation:
Service d'Astrophysique/IRFU/DSM, CEA Saclay, Gif-sur-Yvette, France
G. Maurin
Affiliation:
Université de Savoie, 27 rue Marcoz, BP 1107 73011-Chambery cedex, France
J. Vink
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, The Netherlands
S. Orlando
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy email: [email protected]
F. Reale
Affiliation:
INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy email: [email protected] Dipartimento di Fisica e Chimica, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
S. Broersen
Affiliation:
Astronomical Institute “Anton Pannekoek”, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova remnant shocks are strong candidates for being the source of energetic cosmic rays and hadron acceleration is expected to increase the shock compression ratio, providing higher post-shock densities. We exploited the deep observations of the XMM-Newton Large Program on SN 1006 to verify this prediction. Spatially resolved spectral analysis led us to detect X-ray emission from the shocked ambient medium in SN 1006 and to find that its density significantly increases in regions where particle acceleration is efficient. Our results provide evidence for the effects of acceleration of cosmic ray hadrons on the post-shock plasma in supernova remnants.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Acero, F., Aharonian, F., Akhperjanian, A. G., et al. 2010, A&A, 516, A62Google Scholar
Acero, F., Ballet, J., & Decourchelle, A. 2007, A&A, 475, 883Google Scholar
Acero, F., Ballet, J., Decourchelle, A., et al. 2009, A&A, 505, 157Google Scholar
Bamba, A., Yamazaki, R., & Hiraga, J. S. 2005, ApJ, 632, 294Google Scholar
Berezhko, E. G. & Ellison, D. C. 1999, ApJ, 526, 385Google Scholar
Berezhko, E. G. & Völk, H. J. 2007, ApJl, 661, L175Google Scholar
Blasi, P. 2002, Astroparticle Physics, 16, 429Google Scholar
Borkowski, K. J., Lyerly, W. J., & Reynolds, S. P. 2001, ApJ, 548, 820Google Scholar
Borkowski, K. J., Reynolds, S. P., Green, D. A., et al. 2010, ApJ, 724, L161Google Scholar
Cassam-Chenaï, G., Hughes, J. P., Ballet, J., & Decourchelle, A. 2007, ApJ, 665, 315Google Scholar
Cassam-Chenaï, G., Hughes, J. P., Reynoso, E. M., Badenes, C., & Moffett, D. 2008, ApJ, 680, 1180Google Scholar
Decourchelle, A., Ellison, D. C., & Ballet, J. 2000, ApJl, 543, L57Google Scholar
Dubner, G. M., Giacani, E. B., Goss, W. M., Green, A. J., & Nyman, L.-Å. 2002, A&A, 387, 1047Google Scholar
Ferrand, G., Decourchelle, A., Ballet, J., Teyssier, R., & Fraschetti, F. 2010, A&A 509 L10+Google Scholar
Ghavamian, P., Laming, J. M., & Rakowski, C. E. 2007, ApJ, 654, L69Google Scholar
Ghavamian, P., Winkler, P. F., Raymond, J. C., & Long, K. S. 2002, ApJ, 572, 888Google Scholar
Katsuda, S., Petre, R., Long, K. S., et al. 2009, ApJ, 692, L105CrossRefGoogle Scholar
Koyama, K., Petre, R., Gotthelf, E. V., et al. 1995, Nature, 378, 255Google Scholar
Miceli, M., Bocchino, F., Decourchelle, A., et al. 2012, A&A, 546, A66Google Scholar
Miceli, M., Bocchino, F., Iakubovskyi, D., et al. 2009, A&A, 501, 239Google Scholar
Orlando, S., Bocchino, F., Miceli, M., Petruk, O., & Pumo, M. L. 2012, ApJ, 749, 156Google Scholar
Pannuti, T. G., Allen, G. E., Filipović, M. D., et al. 2010, ApJ, 721, 1492Google Scholar
Petruk, O., Bocchino, F., Miceli, M., et al. 2009, MNRAS, 399, 157Google Scholar
Reynolds, S. P., Borkowski, K. J., Green, D. A., et al. 2009, ApJl, 695, L149Google Scholar
Reynolds, S. P. & Keohane, J. W. 1999, ApJ, 525, 368Google Scholar
Rothenflug, R., Ballet, J., Dubner, G., et al. 2004, A&A, 425, 121Google Scholar
Slane, P., Hughes, J. P., Edgar, R. J., et al. 2001, ApJ, 548, 814Google Scholar
Tian, W. W., Li, Z., Leahy, D. A., et al. 2010, ApJ, 712, 790Google Scholar
Vink, J. 2012, A&Ar, 20, 49Google Scholar
Vink, J., Laming, J. M., Gu, M. F., Rasmussen, A., & Kaastra, J. S. 2003, ApJl, 587, L31Google Scholar
Vink, J., Yamazaki, R., Helder, E. A., & Schure, K. M. 2010, ApJ, 722, 1727Google Scholar
Yamaguchi, H., Koyama, K., Katsuda, S., et al. 2008, PASJ, 60, 141Google Scholar