Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T17:35:56.071Z Has data issue: false hasContentIssue false

Primordial nucleosynthesis: A cosmological probe

Published online by Cambridge University Press:  23 April 2010

Gary Steigman*
Affiliation:
Departments of Physics and Astronomy, Center for Cosmology and Astro-Particle Physics, The Ohio State University, 192 West Woodruff Avenue, Columbus, OH 43210USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

During its early evolution the Universe provided a laboratory to probe fundamental physics at high energies. Relics from those early epochs, such as the light elements synthesized during primordial nucleosynthesis when the Universe was only a few minutes old, and the cosmic background photons, last scattered when the protons (and alphas) and electrons (re)combined some 400 thousand years later, may be used to probe the standard models of cosmology and of particle physics. The internal consistency of primordial nucleosynthesis is tested by comparing the predicted and observed abundances of the light elements, and the consistency of the standard models is explored by comparing the values of the cosmological parameters inferred from primordial nucleosynthesis with those determined by studying the cosmic background radiation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Aoki, W. et al. 2009, ApJ, 698, 1803.CrossRefGoogle Scholar
Asplund, M. et al. 2006, ApJ, 644, 229.CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Balser, D. S. 2002, Nature, 415, 54.CrossRefGoogle Scholar
Boesgaard, A. M., Stephens, A., & Deliyannis, C. P. 2005, ApJ, 633, 398.CrossRefGoogle Scholar
Dunkley, J. et al. 2009, ApJS, 180, 306.CrossRefGoogle Scholar
Epstein, R. I., Lattimer, J. M., & Schramm, D. N. 1976, Nature, 265, 219.CrossRefGoogle Scholar
Geiss, J. & Gloeckler, J. G. 1998, Space Sci. Rev. 84, 239.CrossRefGoogle Scholar
Kneller, J. P. & Steigman, G. 2004, New J. Phys., 6, 117.CrossRefGoogle Scholar
Lind, K. et al. 2009, A&A, 503, 545.Google Scholar
Olive, K. A. & Skillman, E. D. 2004, ApJ, 617, 29CrossRefGoogle Scholar
Peimbert, M., Luridiana, V., & Peimbert, A. 2007, ApJ, 666, 634CrossRefGoogle Scholar
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C. C. 2008, MNRAS, 391, 1499.CrossRefGoogle Scholar
Reeves, H., Audouze, J., Fowler, W. A., & Schramm, D. N. 1973, ApJ, 179, 909.CrossRefGoogle Scholar
Rood, R. T. 1972, ApJ, 177, 681.CrossRefGoogle Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M. 1976, ApJL, 207, L57.CrossRefGoogle Scholar
Steigman, G. 2006, JCAP, 10, 016.CrossRefGoogle Scholar
Steigman, G. 2007, Ann. Rev. Nucl. Part. Sci., 57, 463.CrossRefGoogle Scholar