Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T16:09:56.035Z Has data issue: false hasContentIssue false

Polarized thermal dust emission as seen by Planck : A comparison with MHD simulations and lessons from a toy model

Published online by Cambridge University Press:  12 September 2016

F. Levrier
Affiliation:
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, F-75005, Paris, France email: [email protected]
J. Neveu
Affiliation:
LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, École Normale Supérieure, F-75005, Paris, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Planck satellite has mapped the polarized microwave sky (from 30 GHz to 353 GHz) with unprecedented sensitivity and angular resolution. This wealth of data yields the first complete map of polarized thermal emission from dust in our own Galaxy, shedding new light on the formation of dense cold structures within which new stars and planetary systems are born, under the combined effects of gravity, turbulence and magnetic fields. We present a statistical analysis of this polarized emission from nearby molecular clouds, with an emphasis on the evolution of the maximum polarization fraction observed as a function of column density, and on the anti-correlation between the polarization fraction and the local dispersion of polarization angles. To interpret this data, numerical simulations of anisotropic MHD turbulence underline the essential role played by the topology of the interstellar magnetic field, in particular its large-scale component. As an extension to this work published in Planck Intermediate Results XX (A&A, 576, 105, 2015), the statistical properties of the random component of the interstellar magnetic field are explored using a toy model based on fractional Brownian motion (fBm) fields.

Type
Poster Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Fromang, S., Hennebelle, P., Teyssier, R. 2006, A&A, 457, 371 Google Scholar
Hennebelle, P., Banerjee, R., Vazquez-Semadeni, E., Klessen, R.S., Audit, E. 2008, A&A, 486, L43 Google Scholar
Planck 2015 Results I 2015, A&A, submittedGoogle Scholar
Planck Intermediate Results XIX 2015, A&A, 576, 104 Google Scholar
Planck Intermediate Results XX 2015, A&A, 576, 105 Google Scholar
Teyssier, R. 2002, A&A, 385, 337 Google Scholar