Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T04:22:55.308Z Has data issue: false hasContentIssue false

Polarization of Class I methanol (CH3OH) masers

Published online by Cambridge University Press:  24 July 2012

A. P. Sarma*
Affiliation:
DePaul University, Chicago IL, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic fields are known to play an important role in several stages of the star formation process. Class I methanol (CH3OH) masers offer the possibility of measuring the large-scale magnetic field in star forming regions at high angular resolution, due to connections between the large-scale magnetic field in the pre-shock regions to the observed magnetic field along the outflows in the post-shock regions where these masers are formed. The detection of the Zeeman effect in the 36 GHz and 44 GHz Class I methanol maser lines by Sarma and Momjian has opened an exciting new window into the study of the star formation process, but for the results to be interpreted correctly, the Zeeman splitting factor (z) for both these lines needs to be urgently measured by experiment. Ratios between the pre-shock and post-shock magnetic fields and densities lead to the conclusion that the value of z cannot be too different from 1 Hz mG−1, unless the predicted densities at which 36 GHz and 44 GHz methanol masers are excited are drastically incorrect. Similarities between the detected fields in 36 GHz and 44 GHz Class I masers, and 6.7 GHz Class II masers, support the claim that these masers may be tracing the large-scale magnetic field or that the magnetic field remains the same during different evolutionary stages of the star formation process, provided such similarities are not just due to the assumption of a uniform nominal value for z, or result simply from selection effects due to orientation and/or the shock process. Given the exciting possibilities, a larger statistical sample of measurements in both the 36 GHz and 44 GHz lines is certainly needed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Banerjee, R. & Pudritz, R. E. 2006, ApJ, 641, 949CrossRefGoogle Scholar
Banerjee, R. & Pudritz, R. E. 2007, ApJ, 660, 479CrossRefGoogle Scholar
Brogan, C. L. & Troland, T. H. 2001, ApJ, 560, 821CrossRefGoogle Scholar
Castets, A. & Langer, W. D. 1995, A&A, 294, 835Google Scholar
Cragg, D. M., Johns, K. P., Godfrey, P. D., & Brown, R. D. 1992, MNRAS, 259, 203CrossRefGoogle Scholar
Crutcher, R. M., Troland, T. H., Goodman, A. A., Heiles, C., Kazes, I., & Myers, P. C. 1993, ApJ, 407, 175CrossRefGoogle Scholar
Crutcher, R. M. 1999, ApJ, 520, 706CrossRefGoogle Scholar
Crutcher, R. M., Hakobian, N., & Troland, T. H. 2009, ApJ, 692, 844CrossRefGoogle Scholar
Ellingsen, S. P. 2005, MNRAS, 359, 1498CrossRefGoogle Scholar
Falgarone, E., Troland, T. H., Crutcher, R. M., & Paubert, G. 2008, A&A, 487, 247Google Scholar
Fish, V. L. & Reid, M. J. 2006, ApJS, 164, 99CrossRefGoogle Scholar
Heiles, C., Goodman, A. A., McKee, C. F., & Zweibel, E. G. 1993, in Protostars and Planets III, ed. Levy, E. H. & Lunine, J. I. (Tucson: Univ. Arizona Press), 279Google Scholar
Jen, C. K. 1951, Physical Review, 81, 197CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARAA, 45, 565CrossRefGoogle Scholar
Menten, K. M. 1991, ApJL, 380, L75CrossRefGoogle Scholar
Nedoluha, G. E. & Watson, W. D. 1992, ApJ, 384, 185CrossRefGoogle Scholar
Poidevin, F., Bastien, P., & Matthews, B. C. 2010, ApJ, 716, 893CrossRefGoogle Scholar
Pratap, P., Shute, P. A., Keane, T. C., Battersby, C., & Sterling, S. 2008, AJ, 135, 1718CrossRefGoogle Scholar
Sandell, G., Goss, W. M., & Wright, M. 2005, ApJ, 621, 839CrossRefGoogle Scholar
Sarma, A. P., Troland, T. H., Roberts, D. A., & Crutcher, R. M. 2000, ApJ, 533, 271CrossRefGoogle Scholar
Sarma, A. P., Troland, T. H., Crutcher, R. M., & Roberts, D. A. 2002, ApJ, 580, 928CrossRefGoogle Scholar
Sarma, A. P., Troland, T. H., Romney, J. D., & Huynh, T. H. 2008, ApJ, 674, 295CrossRefGoogle Scholar
Sarma, A. P. & Momjian, E. 2009, ApJL, 705, L176CrossRefGoogle Scholar
Sarma, A. P. & Momjian, E. 2011, ApJL, 730, L5CrossRefGoogle Scholar
Sault, R. J., Killeen, N. E. B., Zmuidzinas, J., & Loushin, R. 1990, ApJS, 74, 437CrossRefGoogle Scholar
Slysh, V. I. & Kalenskii, S. V. 2009, Astronomy Reports, 53, 519CrossRefGoogle Scholar
Takahashi, S., Saito, M., Ohashi, N., Kusakabe, N., Takakuwa, S., Shimajiri, Y., Tamura, M., & Kawabe, R. 2008, ApJ, 688, 344CrossRefGoogle Scholar
Troland, T. H. & Heiles, C. 1982, ApJ, 252, 179CrossRefGoogle Scholar
Troland, T. H., Heiles, C., Sarma, A. P., Ferland, G. J., Crutcher, R. M., & Brogan, C. L. 2008, arXiv:0804.3396Google Scholar
Vlemmings, W. H. T. 2008, A&A, 484, 773Google Scholar
Vlemmings, W. H. T., Surcis, G., Torstensson, K. J. E., & van Langevelde, H. J. 2010, MNRAS, 404, 134Google Scholar
Vlemmings, W. H. T., Torres, R. M., & Dodson, R. 2011, A&A, 529, A95Google Scholar