Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T12:09:40.789Z Has data issue: false hasContentIssue false

Polarimetry as a tool to find and characterise habitable planets orbiting white dwarfs

Published online by Cambridge University Press:  24 July 2015

Luca Fossati
Affiliation:
Argelander-Institut für Astronomie der Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany email: [email protected]
Stefano Bagnulo
Affiliation:
Armagh Observatory, College Hill, Armagh BT61 9DG, Northern Ireland, UK
Carole A. Haswell
Affiliation:
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
Manish R. Patel
Affiliation:
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
Richard Busuttil
Affiliation:
Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
Piotr M. Kowalski
Affiliation:
Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, D-52425 Jülich, Germany
Denis V. Shukyak
Affiliation:
Institute of Astrophysics, Georg-August-University, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
Michael F. Sterzik
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany
Gennady Valyavin
Affiliation:
Special Astrophysical Observatory of the RAS, 369167, Nizhny Arkhyz, Karachaevo-Cherkesia, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are several ways planets can survive the giant phase of the host star, hence one can consider the case of Earth-like planets orbiting white dwarfs. As a white dwarf cools from 6000 K to 4000 K, a planet orbiting at 0.01 AU from the star would remain in the continuous habitable zone (CHZ) for about 8 Gyr. Polarisation due to a terrestrial planet in the CHZ of a cool white dwarf (CWD) is 102 (104) times larger than it would be in the habitable zone of a typical M-dwarf (Sun-like star). Polarimetry is thus a powerful tool to detect close-in planets around white dwarfs. Multi-band polarimetry would also allow one to reveal the presence of a planet atmosphere, even providing a first characterisation. With current facilities a super-Earth-sized atmosphereless planet is detectable with polarimetry around the brightest known CWD. Planned future facilities render smaller planets detectable, in particular by increasing the instrumental sensitivity in the blue. Preliminary habitability study show also that photosynthetic processes can be sustained on Earth-like planets orbiting CWDs and that the DNA-weighted UV radiation dose for an Earth-like planet in the CHZ is less than the maxima encountered on Earth, hence white dwarfs are compatible with the persistence of complex life from the perspective of UV irradiation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Agol, E. 2011, ApJ (Letters) 731, L31 Google Scholar
Barnes, R. & Heller, R. 2013, Astrobiology 13, 279 Google Scholar
Bear, E. & Soker, N. 2013, New Astronomy 19, 56 Google Scholar
Berdyugina, S. V., Berdyugin, A. V., Fluri, D. M., & Piirola, V. 2011, ApJ (Letters) 728, L6 Google Scholar
Bergfors, C., Farihi, J., Dufour, P., & Rocchetto, M. 2014, MNRAS 444, 2147 Google Scholar
Bonsor, A., Mustill, A. J., & Wyatt, M. C. 2011, MNRAS 414, 930 Google Scholar
Charpinet, S., Fontaine, G., Brassard, P., Green, E. M., Van Grootel, V., Randall, S. K., Silvotti, R., Baran, A. S., Østensen, R. H., Kawaler, S. D., & Telting, J. H. 2011, Nature 480, 496 Google Scholar
Debes, J. H., Walsh, K. J., & Stark, C. 2012, ApJ 747, 148 Google Scholar
Eggleton, P. P. 1971, MNRAS 151, 351 Google Scholar
Faedi, F., West, R. G., Burleigh, M. R., Goad, M. R., & Hebb, L. 2011, MNRAS 410, 899 Google Scholar
Farihi, J., Jura, M., & Zuckerman, B. 2009, ApJ 694, 805 Google Scholar
Farihi, J., Gänsicke, B. T., Steele, P. R., Girven, J., Burleigh, M. R., Breedt, E., & Koester, D. 2012, MNRAS 421, 1635 Google Scholar
Fossati, L., Bagnulo, S., Haswell, C. A., Patel, M. R., Busuttil, R., Kowalski, P. M., Shulyak, D. V., & Sterzik, M. F. 2012, ApJ (Letters) 757, L15 Google Scholar
Frewen, S. F. N. & Hansen, B. M. S. 2014, MNRAS 439, 2442 Google Scholar
Friedrich, S., Zinnecker, H., Correia, S., Brandner, W., Burleigh, M. & McCaughrean, M. 2007, in: Napiwotzki, R. & Burleigh, R. (eds.), Search for Giant Planets around White Dwarfs with HST, Spitzer, and VLT, Proc. 15th European Workshop on White Dwarfs (ASP-CS), p. 372Google Scholar
Frink, S., Mitchell, D. S., Quirrenbach, A., Fischer, D. A., Marcy, G. W., & Butler, R. P. 2002, ApJ 576, 478 Google Scholar
Fulton, B. J., Tonry, J. L., Flewelling, H., Burgett, W. S., Chambers, K. C., Hodapp, K. W., Huber, M. E., Kaiser, N., Wainscoat, R. J., & Waters, C. 2014, ApJ 796, 114 Google Scholar
Gänsicke, B. T., Marsh, T. R., Southworth, J., & Rebassa-Mansergas, A. 2006, Science 314, 1908 Google Scholar
Haswell, C. 2010, ‘Transiting exoplanets’, CUP ISBN 978-0521139380Google Scholar
Hatzes, A. P., Guenther, E. W., Endl, M., Cochran, W. D., Döllinger, M. P., & Bedalov, A. 2005, A&A 437, 743 Google Scholar
Holberg, J. B., Sion, E. M., Oswalt, T., McCook, G. P., Foran, S., & Subasavage, J. P. 2008, AJ 135, 1225 Google Scholar
Koester, D., Gänsicke, B. T., & Farihi, J. 2014, A&A 566, A34 Google Scholar
Kostogryz, N. M., Yakobchuk, T. M., Morozhenko, O. V. & Vid'Machenko, A. P. 2011, MNRAS 415, 695 CrossRefGoogle Scholar
Kowalski, P. M. 2006, PhD Thesis, Vanderbilt University, whitedwarf.org/theses/kowalski.pdf Google Scholar
Kowalski, P. M. & Saumon, D. 2006, ApJ 651, L137 Google Scholar
Lai, D. 2012, ApJ (Letters) 757, L3 Google Scholar
Li, J., Ferrario, L., & Wickramasinghe, D. 1998, ApJ (Letters) 503, L151 CrossRefGoogle Scholar
Lucas, P. W., Hough, J. H., Bailey, J. A., Tamura, M., Hirst, E., & Harrison, D. 2009, MNRAS 393, 229 Google Scholar
McCree, K. J. 1972, Agric. Meteorol. 10, 443 Google Scholar
Melis, C., Dufour, P., Farihi, J., Bochanski, J., Burgasser, A. J., Parsons, S. G., Gänsicke, B. T., Koester, D., & Swift, B. J. 2012, ApJ (Letters) 751, L4 Google Scholar
Monteiro, H. 2010, Bulletin of the Astronomical Society of Brazil 29, 22 Google Scholar
Mullally, F., Winget, D. E., De Gennaro, S., Jeffery, E., Thompson, S. E., Chandler, D., & Kepler, S. O. 2008, ApJ 676, 573 Google Scholar
Patel, M. R., Christou, A. A., Cockell, C. S., Ringrose, T. J., & Zarnecki, J. C. 2004, Icarus 168, 93 Google Scholar
Raven, J. 2007, Nature 488, 418 Google Scholar
Salaris, M., Cassisi, S., Pietrinferni, A., Kowalski, P. M., & Isern, J. 2010, ApJ 716, 1241 Google Scholar
Sato, B., Ando, H., Kambe, E., Takeda, Y., Izumiura, H., Masuda, S., Watanabe, E., Noguchi, K., Wada, S., Okada, N., Koyano, H., Maehara, H., Norimoto, Y., Okada, T., Shimizu, Y., Uraguchi, F., Yanagisawa, K., & Yoshida, M. 2003, ApJ (Letters) 597, L157 Google Scholar
Seager, S., Whitney, B. A., & Sasselov, D. D. 2000, ApJ 540, 504 Google Scholar
Selsis, F., Kasting, J. F., Levrard, B., Paillet, J., Ribas, I. & Delfosse, X 2007, A&A 476, 1373 Google Scholar
Silvotti, R., Schuh, S., Janulis, R., Solheim, J.-E., Bernabei, S., Østensen, R., Oswalt, T. D., Bruni, I., Gualandi, R., Bonanno, A., Vauclair, G., Reed, M., Chen, C.-W., Leibowitz, E., Paparo, M., Baran, A., Charpinet, S., Dolez, N., Kawaler, S., Kurtz, D., Moskalik, P., Riddle, R., & Zola, S. 2007, Nature 449, 189 Google Scholar
Silvotti, R., Charpinet, S., Green, E., Fontaine, G., Telting, J. H., Østensen, R. H., Van Grootel, V., Baran, A. S., Schuh, S. & Fox Machado, L. 2014, A&A 570, A130 Google Scholar
Stam, D. M., de Rooij, W. A., Cornet, G., & Hovenier, J. W. 2006, A&A 452, 669 Google Scholar
Stam, D. M. 2008, A&A 482, 989 Google Scholar
Stancliffe, R. J., Glebbeek, E., Izzard, R. G., & Pols, O. R. 2007, A&A 464, L57 Google Scholar
Sterzik, M. F., Bagnulo, S., & Palle, E. 2012, Nature 483, 64 Google Scholar
Valyavin, G., Shulyak, D., Wade, G. A., Antonyuk, K., Zharikov, S. V., Galazutdinov, G. A., Plachinda, S., Bagnulo, S., Fox Machado, L., Alvarez, M., Clark, D. M., Lopez, J. M., Hiriart, D., Han, I., Jeon, Y.-B., Zurita, C., Mujica, R., Burlakova, T., Szeifert, T., & Burenkov, A. 2014, Nature 525, 88 Google Scholar
Veras, D., Leinhardt, Z. M., Bonsor, A., & Gänsicke, B. T. 2014, MNRAS 445, 2244 Google Scholar
Veras, D. & Gänsicke, B. T. 2014, MNRAS 447, 1049 Google Scholar
Wiktorowicz, S. J. 2009, ApJ 696, 1116 CrossRefGoogle Scholar
Zuckerman, B., Melis, C., Klein, B., Koester, D., & Jura, M. 2010, ApJ 722, 725 Google Scholar